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Abstract: Depression is associated with decreased serotonin metabolism and functioning in the 

central nervous system, evidenced by both animal models of depression and clinical patient 

studies. Depression is also accompanied by decreased hippocampal neurogenesis in diverse 

animal models. Neurogenesis is mainly defined in dentate gyrus of hippocampus as well as 

subventricular zone. Moreover, hypothalamus, amygdala, olfactory tubercle, and piriform 

cortex are reported with evidences of adult neurogenesis. Physical exercise is found to modulate 

adult neurogenesis significantly, and results in mood improvement. The cellular mechanism such 

as adult neurogenesis upregulation was considered as one major mood regulator following 

exercise. The recent advances in molecular mechanisms underlying exercise-regulated 

neurogenesis have widen our understanding in brain plasticity in physiological and pathological 

conditions, and therefore better management of different psychiatric disorders. 
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INTRODUCTION Depression is associated with decreased serotonin metabolism and functioning 

in the central nervous system, evidenced by both animal models of depression and clinical 

patient studies. Promoting serotoninergic transmission using serotonin-norepinephrine 

reuptake inhibitors or monoamine oxidase inhibitors (common antidepressants) leads to 

improved mood states and potentially the “cure of depression”, suggesting that rescuing the 

serotonin signaling is critical in depression management [1]. Depression is also accompanied by 

decreased hippocampal neurogenesis in diverse animal models [1]. Neurogenesis is firstly 

characterized in rodents in 1960s [2, 3], and mainly defined in dentate gyrus (DG) of 

hippocampus as well as subventricular zone (SVZ) [4-6]. Moreover, hypothalamus, amygdala, 

olfactory tubercle, and piriform cortex are reported with evidences of adult neurogenesis [7-9]. 

The hippocampal neurogenesis is found to be important for spatial learning, as well as emotion 

state control in both rodents and primates [4, 6, 10]; While the SVZ generated new neurons 

migrate to olfactory bulb (OB), through rostral migratory stream (RMS), and is involved in 

olfactory processing, injury repair and defending the viral spreading from the central olfactory 

pathway [5, 11-14]. Stress hormone (e.g. glucocorticoid) administration in animals could fully 

mimic the effects of depression on adult hippocampal neurogenesis [15]. Therefore, the trigger 

stress is responsible for reducing the cells proliferation and neuronal survival. However, this 

reduction can be reversed by different therapies, such as electroconvulsive therapy, 

antidepressants, physical exercise, and environment enrichments [16, 17]. Physical exercise is 

found to modulate adult neurogenesis significantly, and results in mood improvement [18-20]. 

Interestingly, in recent years it is found that serotonin is one key regulator responsible for 

exercise-dependent neurogenesis increase, and therefore the “cure of depression”. 

 



PATHOGENESIS OF DEPRESSION 

Depression can result from long-term or acute stressful events, pharmacological treatments as 

well as disease states. Psychological stressors activate the hypothalamic-pituitaryadrenal (HPA) 

axis, increasing the secretion of glucocorticoids (e.g. cortisol) [21]. Glucocorticoids bind to the 

glucocorticoid receptors (GR) on neurons and leads to neuronal injury pathways [22, 23]. It is 

believed that in addition to the monoamine deficiency, brain is suffered from the loss of 

neurotrophic factors as well. In fact, the expression of brain-derived neurotrophic factor (BDNF) 

and BDNF-related genes were downregulated in both animal models of depression [24] and 

post-mortem human brain samples of depression patients [25]. Moreover, chronic but not acute 

administration of antidepressants increased BDNF levels in the brain, which was temporally 

correlated to the therapeutic benefits [26, 27]. The suppression of adult neurogenesis is 

considered as one important pathological mechanism underlying depression in recent years [1, 

16, 28]. In addition, immune system activation, inflammation and oxidative stress pathway 

activations could concomitantly contribute to the pathogenesis of clinical depression [29]. For 

instance, IL-6 administration to the animals induces depression-like behaviors [30], and the 

levels of pro-inflammatory cytokines such as IL-6 and tumor necrosis factor-alpha were reported 

to increase in depression patients [31]. Interestingly, most pro-inflammatory cytokines suppress 

hippocampal neurogenesis [32], while anti-inflammation drugs were found to restore adult 

neurogenesis [33]. 

 

ADULT NEUROGENESIS AND DEPRESSION 

The neurogenesis-depression hypothesis suggests that the down-regulation of adult 

neurogenesis contributes to the development of depression, which can then be corrected by 

antidepressant drugs or therapies [34]. The first evidence of down-regulated neurogenesis in 

the presence of depression is related to hippocampal atrophy. Brain imaging studies have 

consistently described hippocampal atrophy or hippocampal volume reduction in unipolar major 

depression and other diseases associated with affective disorders, such as posttraumatic stress 

disorder (PTSD) [35, 36]. Endocrine disorders that result in depressive symptoms, such as 

Cushing’s disease, have also shown decreases in brain hippocampal volume [37]. Furthermore, 

studies on postmortem tissues from depressed subjects showed increases in cell packing density 

in the hippocampus, as well as decreases is overall hippocampal volume [38], while other studies 

suggest a reduced volume in both the hippocampus and the amygdala [39]. The stress-induced 

inhibition of adult neurogenesis has been recognized to be a general phenomenon and occurs 

independent of species, age and the source of the stress [40]. Numerous studies have shown 

that adult neurogenesis is down-regulated under both acute and chronic stress conditions [16, 

28, 41, 42]. However, hippocampal neurogenesis rates have shown variability between different 

mouse strains [43, 44]. The widely accepted theory about hippocampal damage during the 

development of depression focuses on the neurotoxicity of glucocorticoid, which is generated 

during the over-activation of HPA axis under stress [45]. Removal of circulating adrenal steroids 

by adrenalectomy increases cell proliferation and adult neurogenesis in rodents [46-48], and 

increased corticosterone inhibits this process [48, 49]. Patients with depression often display 

some form of HPA axis activation, and the subtypes of depression most frequently associated 

with HPA activation are those most likely to be associated with hippocampal volume reductions 

[50]. The glucocorticoids could exert direct apoptotic effects, reducing cellular resilience and 

making neurons more vulnerable to the negative impacts of other disadvantageous conditions 

[51]. Stress-induced decreases in the number of proliferating cells might be the basis for 



hippocampal volume reduction, and recent discovery that stress can elevate cell cycle inhibitor 

suggest a possible mechanism of preventing progenitors from cell cycle re-entering in 

depression [52]. Given that “diminished” neurogenesis is associated with stressful 

environments, and has been seen in the development of depression, it would be interesting to 

see if there is a functional contribution of adult neurogenesis, and whether restoring 

neurogenesis could cure depression. In the last few years people discovered that antidepressant 

drugs can enhance dendritic complexity [53, 54] and increase the number of new neurons born 

in the hippocampus of adult animals in a non-acute, chronic time course [55]. Furthermore, 

electroconvulsive shock therapy, which has a strong anti-depressive effect and has been 

clinically adopted as a treatment of depression, has been shown to significantly elevate the 

neurogenesis in the dentate gyrus of the rodent hippocampus in a dose-dependent manner [56]. 

This implies a possible relationship between neurogenesis and the antidepressant effect of 

pharmacological treatment. In some cases, the effects of antidepressants are blocked with 

ablated neurogenesis [57], indicating that the restoration of functional adult neurogenesis may 

be the prerequisite for behavioral and affective improvements. Still, it should be noted that 

neurogenesis is dispensable for antidepressant-like drug effects in some other cases, such as 

BALB/cJ mice [58, 59] (Fig. 1). 

 

EXERCISE AND ADULT NEUROGENESIS: SEROTONIN SIGNALING 

The modulating effects of physical exercise, especially voluntary exercise on adult neurogenesis 

have been well recognized in past decade [19, 20, 60-62]. Different signaling pathways were 

reported to be involved in the upregulation of hippocampal neurogenesis, such as growth factor 

signaling (e.g. BDNF, VEGF) [63-65], short peptides (e.g. leptin, adiponectin) [66, 67], and cell 

cycle regulation (e.g. inhibiting p21) [68]. Very recently, several studies pointed out a new player 

in exercise-enhanced adult neurogenesis – serotoninergic signaling. These findings provided 

additional evidences underlying the depressioncure effects of exercise-enhanced adult 

neurogenesis. The first report was made on the brain-specific serotonindeficient mice 

(tryptophan hydroxylase 2/TPH2 knockout mice). At baseline, the adult neurogenesis is not 

disrupted; while the Knockout (KO) animals exhibited significantly reduction in upregulation of 

cell proliferation following running [69], suggesting that serotonin is essential for exercise 

induced neurogenesis. 

 



 

 

It is known that serotonin receptors are expressed well in neurogenic zones and are regulating 

adult neurogenesis [70, 71]. However, it is unclear how would this affect the running-induced 

adult neurogenesis. In another study with serotonin receptor type 3A subunit deficit mice, the 

authors confirmed the involvement of serotonin receptor 3A in regulating the adult 

neurogenesis under exercise [72]. Similar to TPH2 KO animals, these serotonin receptor type 3A 

KO mice exhibited normal adult neurogenesis at baseline, but the deficits to increase cell 

proliferation following physical exercise. Consistently, the antidepressive effect of running is 

missing in these animals. However, it is found that context-freezing learning is still enhanced 

following running in the serotonin receptor type 3A KO mice; this might be explained by synaptic 

plasticity mechanism such as dendritic remodeling [73], or other types of serotonin receptors 

are involved. These results provided novel targets for depression treatment, such as the 

serotonin receptor agonists, especially the serotonin receptor 3A agonist. It will be interesting 

to understand if different subtypes of the serotonin receptors are responsible for differential 

effects of adult neurogenesis on the hippocampal functions. Indeed, serotonin signaling 

selectively neural pathways in the hippocampus (e.g. potentiation of TA-CA1 but not SC-CA1 

glutamatergic transmission) [74]. Future studies are required to elucidate the role of serotonin 

in depression-induced-suppression and exerciseinduced-enhancement of adult neurogenesis, 

highlighting the importance of this issue. Current directions point, regardless of inducing effect 

of neurogenesis, that exercise is an important regulatory source of serotonin, and therefore 

highly influent on reducing mood symptoms of depression. One may speculate that such a 

mechanism exercise can replace with the use of specific drugs long-term from a sustained effect. 

 

CONCLUSION 

Physical exercise has long been recognized an effective therapy against mood disorders, 

especially major depression. Cellular mechanisms such as adult neurogenesis upregulation was 

considered a major mood regulator following exercise. Recent advances in molecular 



mechanisms underlying exercise-regulated neurogenesis have widen our understanding in brain 

plasticity in physiological and pathological conditions, and therefore better management of 

different psychiatric disorders. 

 

LIST OF ABBREVIATIONS 

BDNF = Brain-Derived Neurotrophic Factor 

HPA = Hypothalamic-Pituitary-Adrenal 

KO = Knockout 
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