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The purpose of this study was to determine whether the baseline metabolic profile (that is, metabotype) of a patient with major
depressive disorder (MDD) would define how an individual will respond to treatment. Outpatients with MDD were randomly
assigned to sertraline (up to 150 mg per day) (N¼ 43) or placebo (N¼ 46) in a double-blind 4-week trial. Baseline serum samples
were profiled using the liquid chromatography electrochemical array; the output was digitized to create a ‘digital map’ of the
entire measurable response for a particular sample. Response was defined as X50% reduction baseline to week 4 in the 17-item
Hamilton Rating Scale for Depression total score. Models were built using the one-out method for cross-validation. Multivariate
analyses showed that metabolic profiles partially separated responders and non-responders to sertraline or to placebo. For the
sertraline models, the overall correct classification rate was 81% whereas it was 72% for the placebo models. Several pathways
were implicated in separation of responders and non-responders on sertraline and on placebo including phenylalanine,
tryptophan, purine and tocopherol. Dihydroxyphenylacetic acid, tocopherols and serotonin were common metabolites in
separating responders and non-responders to both drug and placebo. Pretreatment metabotypes may predict which depressed
patients will respond to acute treatment (4 weeks) with sertraline or placebo. Some pathways were informative for both
treatments whereas other pathways were unique in predicting response to either sertraline or placebo. Metabolomics may inform
the biochemical basis for the early efficacy of sertraline.
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Introduction

Response to current therapies in treating major depression
varies considerably, with B40% of patients not responding
and 60% not remitting after an initial trial of therapy.1,2 Further,
the onset of antidepressant therapeutic action typically does
not occur until after a few weeks of treatment, which delays
clinicians from knowing whether an antidepressant is going to
work for a particular patient. The detailed molecular mechan-
isms underlying variation in treatment response in depression
and the genetic and biochemical basis remain unknown
although numerous studies implicate the norepinephrine and
serotonin (5-HT) systems.3–10

The placebo effect adds complexity, as 30–40% of major
depressive disorder (MDD) patients respond to placebo
through mechanisms that are not yet understood.11–13 Further
insights into the mechanisms of response to placebo vs
response to medications are needed. To date, there are
no valid biomarkers of depression itself, or of response to
medication or placebo. Mapping biochemical pathways that
are modified in the presence of the disease alone—or upon

treatment of the disease—could provide deeper insights into
disease mechanisms, enable the sub-classification of disease
and yield valuable biomarkers for monitoring disease pro-
gression and response to therapy. This approach could
enhance the accuracy of treatment selection and minimize
poly-pharmacy and trial and error treatment selection among
antidepressant medications.

Metabolomics, the study of metabolism at a global ‘omics’
level, is a new, rapidly growing field with potential to impact
clinical practice. The central concept is that an indivi-
dual’s metabolic state reflects the individual’s overall health
status. It involves the systematic study of the ‘metabolome’,
a repertoire of small molecules present in cells, tissues and
body fluids. The identities, concentrations and fluxes of these
molecules represents the interactions from gene sequence
to gene expression, protein expression and the total cellular
environment, an ‘environment’ that—in the clinical setting—
includes drug exposure.14–19

Metabolomics typically utilizes technologies that aim at
simultaneously quantifying thousands of small molecules in a
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biological sample. This analytical capability can then be joined
to sophisticated mathematical analyses to identify metabolic
profiles, which could provide valuable data to design (1) prog-
nostic, diagnostic and surrogate markers for disease state;
(2) the ability to subclassify disease; (3) biomarkers of drug
response phenotypes leading to patient stratification (pharmaco-
metabolomics); and (4) information about disease mechanisms.
Sophisticated metabolomic analytical platforms, statistics and
bioinformatics tools have recently been developed to enable
metabolic characterization of initial signatures for several
diseases including depression,20–22 motor neuron disease,23

Parkinson’s disease,24 cocaine and opiate addiction,25,26

schizophrenia,27–29 rat models of caloric restriction.16

This study obtained metabolic profiles of depressed out-
patients using electrochemistry-based metabolomics and
considered the following questions:

(1) Can baseline metabolic profiles distinguish between
patients who do and do not respond to 4-week treatment
with sertraline?

(2) Can baseline metabolic profiles distinguish between
patients who do and do not respond to 4 weeks of
treatment with placebo?

(3) Can baseline metabolic profiles differentiate patients who
respond on sertraline from those who respond on placebo?

Patients and methods

Study design. The 89 patients in this report were a subset
of the 165 patients who entered a randomized, double-blind,
flexible dosing, placebo-controlled study performed at 12
clinical sites. In the larger study, patients were randomized to
treatment (oral administration) with either sertraline or
placebo at a ratio of 1:1. Sertraline dosing was started with
50 mg per day at baseline (week 0), with dose increased up
to 100 mg per day at week 1 and up to 150 mg per day at
week 2, as seen needed by the treating clinician. These 89
patients were older (42 yrs vs 33 yrs, Po0.0001) and
included more females (69 vs 57%) than the 76 patients for
which we did not have adequate data to include in the
analysis. Baseline HRS-D17 scores were similar for the two
groups (the mean (s.d.) baseline HRS-D17 for subjects within
this analysis was 24.8 (2.9) vs 24.6 (2.8) for the remainder of
the trial subjects), indicating no significant difference in terms
of pre-treatment severity of disease. Subjects selected for
this study were those with serum samples and HRS-D17

scores available at baseline and at 4 weeks (±1 week) after
treatment.

Patients. Study participants were outpatients, 18–65 years
of age, from various sites across the United States. Patients
had a primary diagnosis of MDD by DSM-IV criteria, with
symptoms of depression present for at least 1 month before
screening, and a total baseline score 422 on the 17-item
Hamilton Rating Scale for Depression (HRSD17)30 at screen-
ing. A complete description of the inclusion and exclusion
used in this study can be found in Supplementary Table S1.
The study protocol was developed in accordance with the
principles of the Declaration of Helsinki. All patients provided

written informed consent. The study was sponsored and
monitored by Pfizer. Each site’s IRB approved and oversaw
the study.

Assessments. Measures were gathered at baseline, week
1 and week 4 of treatment at the clinic visits. The primary
outcome measure was the HRSD17,30 used to assess
depressive symptom severity. Assessments of the HRSD17

were obtained at baseline and at week 4. The HRSD score
was modeled as dichotomous response variable. A patient
was considered a responder to therapy if they showed a
X50% reduction if HRSD scores from baseline to 4 weeks.
This study included the collection of serum samples drawn
from the subset of 89 patients at baseline and week 4.
The samples from these 89 patients were profiled using the
liquid chromatography electrochemical array (LCECA) platform
described below.

Metabolomic profiling
Analysis method. Samples were analyzed using a long
gradient LCECA method that resolves ca.1500–2000
compounds in levels to ca. 500 pg per ml.31–39 The method
is specific for compounds that will undergo electrochemical
oxidation or reduction, and includes multiple compounds
from the tyrosine, tryptophan, sulfur amino acid and purine
pathways, and markers of oxidative stress and protection.
The method employs a 120-min gradient from 0% organic
modifier with an ion-pairing agent (pentane sulfonic acid) to a
highly organic mobile phase with 80/10/10% methanol/
isopropanol/acetonitrile. An array of 16 serial coulometric
electrochemical detectors is set at incremental potentials
from 0–900 mV, responding to oxidizable compounds such
as tocopherol in lower potential sensors and higher oxidation
potential compounds such as hypoxanthine in the higher
potential channels.

Analysis sequence and data output. At the time of
preparation, a pool was created from small aliquots of
each sample in the study, which was then treated iden-
tically to a sample. All assays were run in sequences that
included mixed standard, five samples, pool, five samples,
mixed standard, and so on. Run orders of all samples in
this study were randomized. The sequences minimized
possible analytical artifacts during further data processing.
Data were time normalized to a pool at the midpoint of
the study, aligning major peaks to 0.5 s and minor peaks
to 0.5–2 s.

For the purpose of this study, the data were exported
in digital format (digital maps), which allows to capture all
analytical information for the following data analysis and to
avoid possible artifacts introduced by peak-finding algorithms.
In this study, resolution was set at 1.5 s and the number of
data points (variables, defined as the signal at a given time on
a given channel) obtained from one sample, using our current
LCECA platform, was 65 000. Values for each sample were
then adjusted by averaging between pools to compensate for
any response drift over the study period. All rows for which the
maximum value was below the noise level of the system were
eliminated from subsequent data analysis, leaving B14 000
variables. It is important to note that the number of variables in
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digital maps is not equivalent to the number of analytes,
because an individual analyte is represented by more than
one variable. Depending on the concentration of analyte and
on its separation across EC array, the number of variables
characterizing an analyte could be between 10 and 100.
Following finding the variables differentiating the groups, the
variables were sorted by retention time and channel. This step
allowed isolation of ‘peak clusters’ (that is, all digital map
variables characterizing one specific analyte), which, in turn,
provides an identification of specific markers. Then the most
significant variables in the digital maps were used to identify
the location of the actual marker peaks within the chromato-
grams.

Data analysis
Analysis of the digital maps. Before analysis, a relative s.d.
was calculated for each variable in order to identify possible
outliers.40 Variables with a relative s.d. value 4120% were
taken out of the data set. A high relative s.d. often reflects
sporadic use of other drugs. Thus, these variables were
removed primarily to avoid artifacts from differential drug use
in responders or non-responders. The remaining variables
were log 2 transformed.

The primary objective of the modeling was to determine
whether the baseline metabolomic profile could predict
responder versus non-responder status at week 4, based
on percent of HRSD17 score change from Baseline. Digital
maps were used to construct partial least square-discriminant
analysis (PLS-DA) models for the 43 patients in the sertraline
group and the 46 patients in the placebo group. We used
the variable influence on the projection (VIP) parameter to
identify variables making the most significant contribution
in discriminating between responders and non-responders
on sertraline therapy and placebo in the PLS-DA models.
VIP is a weighted sum of squares of the PLS weight, which
indicates the importance of the variable to the whole
model. Higher scores reflect a greater contribution to the
separation of the groups, in this case responders and
non-responders to sertraline or placebo. Cross-validation
of these models was performed by omitting the data from
one patient before model constructions.40 After the one-
out models were built the data sets were reconstructed,
including only the variables with VIP values 40.7. These
data sets contained B4000 variables representing roughly
30 discrete compounds. The one-out models were rebuilt
with the reconstructed data set and used to classify the
omitted patients as a responder or non-responder. This
procedure was repeated until every subject had been kept
out once.

Results

Sample characteristics. The sertraline and placebo groups
did not differ significantly in age (44±11.4 years vs 40±12.7
years, P¼ 0.12), body mass index (27.76±5.76 vs 29.37±
6.45, P¼ 0.22), gender (29/43 (69%) female vs 32/46 (70%)
female, P¼ 0.83) or race (34/43 (79%) white vs 34/46 (74%)
white, P¼ 0.57). The response rate was slightly higher
for sertraline than for placebo, but this difference was

not statistically significant (25/43 (58%) vs 18/46 (39%)
responders, w2(1)¼ 1.39, P¼ 0.24).

Metabolomic profiles at baseline partially separate respon-
ders and non-reponders treated with sertraline. We used
an electrochemistry based metabolomics platform (LCECA)
to profile samples at baseline and post treatment with
sertraline or placebo. This platform enables quantification
of over a thousand compounds that will undergo electro-
chemical oxidation or reduction, and is particularly suitable
for studying neurotransmitter pathways tryptophan and
tyrosine as well as sulfur amino acid and purine path-
ways, and markers of oxidative stress and protection.31–39

A list of metabolites with known chemical structure that were
quantitatively measured using this platform is presented
in Table 1. The chemical structure of many metabolites
detected by this highly sensitive platform currently remains
unknown.

The variables from the digital maps were used to construct
PLS-DA models for the 43 patients in the sertraline group
(see methods section). Figure 1a shows the separation of
responders (X50% decrease in HRSD17 scores at week 4)
and non-responders (o50% decrease in HRSD17 scores at
week 4) to sertraline.

We used the VIP parameter to identify variables that
have the most significant contribution in discriminating
between responders and non-responders on sertraline
therapy in the PLS-DA model (See Table 2). Some of
the metabolites that contribute to separation have known
chemical structure and included dihydroxyphenylacetic
acid (DOPAC, dopamine pathway), 4-hydroxyphenyllactic
acid (4-HPLA, phenylalanine pathway), serotonin (5-HT,
tryptophan pathway) and gamma tocopherol (vitamin E
pathway). There were several compounds of unknown
structure that emerged as significant in contributing to
the separation of responders and non-responders. Many of
these had VIP values greater than the one associated with
DOPAC, which had the highest VIP value of the known
compounds.

Cross-validation of these models was performed by
omitting the data from one patient during the PLS-DA. After
this model was built the data set was trimmed, including only
the variables with a VIP of greater than 0.7. The trimmed data
sets contained B4000 variables representing about 30
discrete compounds. The model was rebuilt with the trimmed
data set and used to classify the omitted patient as a
responder or non-responder. This procedure was repeated
until every subject had been kept out once. Using this one-out
method we were able to correctly classify 21 of 25 (84%)
responders and 14 of 18 (74%) non-responders with an
overall classification rate of about 81%.

Metabolic profiles at baseline partially separate responders
and non-reponders treated with placebo. PLS-DA analysis
of the 46 patients in the placebo arm show partial separation of
responders and non-responders using binary analysis described
above (Figure 1b). Hypoxanthine, xanthine and uric acid (purine
pathway); 5-methoxytryptophol (5-MTPOL), serotonin (5-HT),
3-hydroxykynurenine (3-OHKY) and 5-hydroxyindoleactic acid
(tryptophan pathway); DOPAC (dopamine pathway); cysteine
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(sulfur amino acid, one carbon metabolism); and several
tocopherols (vitiman E) contributed to the separation of the
responders and non-responders on placebo (see Table 2).
The highest known VIPs were from compounds that are from
the purine pathway (that is, hypoxanthine and uric acid) indi-
cating that this biochemical pathway is of particular importance.
It is also important to note that there were several unknown
compounds that were among the most influential variables in
this model. Cross-validation of these models using the ‘one out’
method described above enabled correct classification of 8 of
19 (42%) of the responders and 25 of 27 (93%) of the non-
responders with an overall classification rate of 72%.

Discussion

It is important to define the metabotype of patients who will not
respond to treatment with a particular SSRI, as it can reduce
the trial and error approach to treatment and help with
selection of an efficacious drug for each patient. Defining
who might respond on placebo is also of great importance
as those who are very likely to respond on placebo could
be excluded from clinical trials to increase the chances for
seeing a drug-specific effect. This may also reduce patient’s
exposure to drugs they might not need. In antidepressant
trials, placebo response is typically high and tends to obscure
efficacy signals of drugs, while introducing heterogeneity in
the observed endpoints such as the HRSD17. Any new tool
to reduce this unwanted data variability, based on well-
demonstrated data, would greatly benefit clinical trials as well
as clinical practice.

Analysis of metabolic profiles at baseline using digital maps
enabled separation of responders and non-responders on
sertraline, and between responders and non-responders on
placebo. This approach identified several compounds that
contributed to separation of responders and non-responders
on sertraline in the PLS-DA model. These included DOPAC,
4-HPLA, 5-HT and gamma tocopherol. In the placebo group
we note several metabolites contributed to separation of
responders and non-responders. These include: hypo-
xanthine, xanthine and uric acid (purine pathway); 5-MTPOL,
5-HT, 3-OHKY and 5-hydroxyindoleactic acid (tryptophan
pathway); DOPAC (tyrosine), cysteine and tocopherols
(vitamin E).

Analysis of sertraline and placebo models shows that
DOPAC, gamma tocopherol, and serotonin significantly
contributed to the separation of responders and non-
responders, though the relative strength of DOPAC was
different in the two models. There were a number of known
compounds that contributed to separation of responders
and non-responders that appeared to be unique to either
sertraline or placebo. Examples include the importance of
purines and 5-MTPOL in response to placebo, but not to
sertraline and the role of 4-HPLA in response to sertraline,
but not to placebo. Thus, it appears that the metabotype of
responders to sertraline only partially overlaps with that of
responders to placebo.

Models based on variables selected from the total output of
the LCECA platform enabled partial classification of respon-
ders and non-responders on sertraline based on percent
change in HRSD17 score from baseline to week 4. With this

Table 1 List of known compounds quantified by the LCECA platform

Metabolite by pathways Abbreviation Metabolite by pathways Abbreviation

Tryptophan Phenylalanine
3-Hydroxykynurenine 3-OHKY 2-Hydroxyphenylacetic acid 2-HPAC
5-Hydroxyindoleacetic acid 5-HIAA 4-hydroxybenzoic acid 4-HBAC
5-Hydroxytryptophan 5-HTP 4-Hydroxyphenyllactic acid 4-HPLA
N-acetylserotonin NA5HT Purine
Anthranilic acid ANA 7-Methylxanthine 7-MXAN
Indole-3-lactic acid I3LA Guanosine GR
Indoleacetic acid IAA Hypoxanthine HX
Indolelactic acid ILA Hypoxanthine/xanthine HX/XAN
Kynurenine KYN Uric acid URIC
Melatonin MEL Xanthine XAN
Serotonin 5-HT Xanthosine XANTH
Tryptophan TRP 7-Methylguanine 7-MG
Tryptophol TPOL Guanosine monophosphate GRMP
5-methoxytryptophol 5-MTPOL Glutamate, cysteine, glutathione

Tyrosine Glutathione (oxidized) GSSG
3-O-methyldopa 3-OMD Glutathione (reduced) GSH
4-Hydroxyphenylacetic acid 4-HPAC Cysteine CYS
Dihydroxymandellic acid DIOLMAL Biosynthesis of steroids, vitamin E
Dihydroxyphenylacetic acid DOPAC Tocopherol-alpha ATOCO
Homogentisic acid HGA Delta tocopherol DTOCO
Homovanillic acid HVA Tocopherol TOCO
L-Dopa LD Tocopherol-gamma GTOCO
Methoxy-hydroxyphenly glycol MHPG Ascorbate
Tyramine TYRA Ascorbate ASC
Tyrosine TYR One carbon metabolism
Vanillylmandelic acid VMA Methionine MET

Exogenous drug Other
Salicylate SAL Vanillic acid VANA
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relatively small sample size, we were able to classify 21 of 25
(84%) responders and 14 of 18 (78%) non-responders on
sertraline with an overall classification rate of about 81%. In
the placebo-treated group, we were able to predict better the
non-responders 25 of 27 (93%) but prediction of responders
was not possible in this pilot study (8 of 19 or 42% of the
responders). The overall classification rate in placebo was
72%. This suggests that biological response to place could be
more complex, as reflected by metabolomic profiles, com-
pared with the response to drug.

It is interesting to note that 5-MTPOL is a methylated
product within the methoxyindole pathway in the pineal
gland.41–43 5-MTPOL is produced from serotonin through
a series of steps involving monoamine oxidase, aldehyde
reductase and hydroxyindole-O-methyltransferase. 5-MTPOL
has important functions that parallel melatonin, another
methylated product of serotonin produced in pineal gland.

Both molecules are implicated in sleep architecture, circadian
rhythm and hormonal axis regulation, among other important
functions that are often altered in depressed patients. Full
analysis of this pathway is underway. 4-HPLA belongs to the
phenyl alanine pathway and is interconnected with the tyrosine
pathway and catecholamine production.

Many of the most influential variables discriminating
between responders and non-responders to sertraline and
responders and non-responders to placebo were of unknown
structure. If these associations are confirmed in larger studies
it would be of importance to focus on elucidating the chemical
structure of those metabolites as a next step towards a more
complete understanding of the biochemistry underpinning
response variation to sertraline and placebo. This will entail a
larger initiative beyond the scope of the current work.

Studies with larger sample sizes will be needed to better
predict who will and will not respond to either sertraline or
placebo at week 4 and to determine whether they have a
common metabolomic profile. This might enable the pre-
selection of these patients for a different treatment strategy.
Any tools that can help a clinician define early on if a patient
is not going to respond to an SSRI would be very useful
and can minimize the poly-pharmacy approach in depression
treatment.

Our findings suggest that response to sertraline and
response on placebo are a function of the underlying unique
metabotype of the patient at baseline. This inherent metabo-
lomic fingerprint captures a metabolic state as regulated by
genome, proteome and environment interactions. This holds
promise for enabling sub-classification of depression states
and improving clinical decisions from an initial set of
biochemical analyses before prescription of a given therapy,
much like tumor genotyping for treatment selection.

It is important to note that this analysis was performed on a
subset of MDD patients and presented inherent limitations.
We have focused on an early time point of response and a
longitudinal study is needed where one would evaluate earlier
and later time points up to 12 weeks. Our interest in the earlier
time points was based on our desire to develop biomarkers of
early response, or no response. Larger studies would be
needed to better define effects of gender and ethnic back-
ground on metabolic signatures of response and to enable
sub stratification of depression. The presence of outliers might
represent subtypes of MDD that will require larger sample
sizes to more fully characterize. In an ongoing study of 1200
MDD patients treated with escitalopram citalopram at the
Mayo Clinic, metabolomic and genetic data are being used to
better define subtypes of depression and metabolic signa-
tures of early response, late response or no response. An
additional limitation to our study is that the LCECA platform
captures information on only redox active compounds in the
tyrosine, tryptophan, purine and sulfur amino acid pathways
and several markers of vitamin status and oxidative
processes. The integration of data from lipidomics and mass
spectrometry-based metabolomics platforms in future studies
will be necessary to yield additional response predictive
power.

In summary, we have shown that the baseline metabolomic
profile or ‘metabotype’ of an MDD patient, as indexed by an
electrochemistry metabolomics platform total output (digital

Figure 1 (a) Partial least square-discriminant analysis (PLS-DA) scores plot
of responders and non-responders on sertraline. (b) PLS-DA scores plot of
responders and non-responders on placebo.
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map), could help classify patients as responders or non-
responders to sertraline or to placebo. It suggests that
metabolomics and metabolic profiles of patients could be
valuable in helping to guide therapeutic choices, thus reducing
trial and error in matching the right drug with the right patient.
Such findings have the potential to contribute to personalizing
therapeutic treatment for patients with a diagnosis of MDD.
Confirmation of these results with samples from an unrelated
clinical trial of similar design would greatly enhance the impact
of these early reported findings. These results provide a
powerful stepping stone into a thorough metabolite identifica-
tion campaign that will highlight the pathways involved in both
response mechanisms, and hopefully lead to biomarker
discovery usable in clinical practice and clinical trial design.
Efforts are already ongoing to collect samples from indepen-
dent trials to confirm the present findings. Although this study
focused on the use of an electrochemistry platform and a
specific area of biochemistry, future studies using comple-
mentary platforms will enable us to define further the
biochemical pathways contributing to response variation.
The ultimate goal would be to reduce the complexity of a
digital map and identify a subset of known metabolites that are
easily measured in a clinical setting. In conclusion, this study
supports the feasibility of using metabolomics as a tool for

understanding individual variation in response to pharmaco-
therapy for MDD and hence means to sub-classify patients
with depression.
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Table 2 Influential variables from the placebo and sertraline models

Var ID Placebo VIP Compound Var ID Sertraline VIP Compound
R vs NR R vs NR

15-16.625 2.99496 HXa 3-65.475 2.82796
14-12.675 2.52897 8-55.65 2.45127
14-13.4 2.47942 8-46.25 2.37137
3-10.05 2.37731 URICa 9-95.25 2.28433
8-86.925 2.32235 11-83.4 2.26306
8-16.225 2.30022 1-12.45 2.1625
15-84.375 2.27326 14-51.375 2.15344
7-16.2 2.24651 VMAb 1-65.375 2.09615
9-86.95 2.21169 12-5.925 2.03472
9-62.825 2.12136 1-20.2 2.00379
9-62.825 2.12136 10-9.85 2.00041
15-95.825 2.11767 3-37.15 1.89479 DOPACb

10-35.525 2.11097 11-38.15 1.62464 4-HPLAb

15-87.275 2.10836 5-58.425 1.40038 5-HTc

10-86.975 2.07774 7-103.175 1.19178 GTOCOd

8-71.5 2.01329 4-104.6 1.0539 TOCOd

3-22.6 1.92119 HGAb

11-64.6 1.91157 5-MTPOLc

11-73.5 1.69416 IAAc

6-7.9 1.65127 ASC
8-23.8 1.54448 MHPG2
7-101.45 1.52418 DTOCOd

1-35.325 1.49646 3-OHKYc

7-103.175 1.31534 GTOCOd

16-11.325 1.30019 CYSe

3-37.15 1.25549 DOPACb

5-58.425 1.24512 5-HTc

12-12.9 1.18595 XANa

3-45.425 1.06467 5-HIAAb

4-104.6 1.02822 TOCOd

3-28.05 1.01075 LDb

Abbreviations: ASC, ascorbate; CYS, cysteine; DOPAC, dihydroxyphenylacetic acid; DTOCO, delta tocopherol; GTOCO, tocopherol-gamma; HGA, homogentisic
acid; 5-HIAA, 5-hydroxyindoleacetic acid; 4-HPLA, 4-hydroxyphenyllactic acid; 5-HT, serotonin; HX, hypoxanthine; IAA, indoleacetic acid; LD, L-dopa; MHPG,
methoxy-hydroxyphenly glycol; MTPOL, 5-methoxytryptophol; 3-OHKY, 3-hydroxykynurenine; TOCO, tocopherol; URIC, uric acid; VIP, variable influence on the
projection; VMA, vanillylmandelic acid; XAN, xanthine.
Note: only unknown variables with VIPs 42 are included in this table. All known variables with a VIP41 are included.
Note: the blue color indicates VIPs that are in common in the sertraline and placebo models.
aPurine pathway metabolite. bTyrosine pathway metabolite. cTryptophan pathway metabolite. dBiosynthesis of steroids. eCysteine.
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