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Introduction
l-Tryptophan (l-Trp) is one of the nine essential amino acids 
and is the least abundant of all 21 dietary amino acids in human 
beings. The distinguishing structural characteristic of Trp is 
that it contains an indole functional group. The l-stereoisomer 
of Trp is used in protein synthesis and in the generation 
of products such as aminergic neurotransmitter serotonin 
(5-hydroxytryptamine [5-HT]), the neurohormone melatonin, 
kynuramine metabolites, amine tryptamine, and importantly 
products of the kynurenine pathway (KP)1,2 (Fig.  1). Trp 
and its catabolites are well known for their immunosuppres-
sive functions, disease tolerance, and contribution to immune 
privileged sites such as eyes, brain, placenta, and testes.1,2 The 
KP represents .95% of Trp-catabolizing pathways and is now 
established as a key regulator of innate and adaptive immunity 
through its involvement in cancer, autoimmunity, and infec-
tion. Infection-induced inflammation triggers catabolism of 
Trp in several bacterial, protozoan, and viral infections such 
as Chlamydia psittaci, Toxoplasma gondii, Leishmania donovani, 
and herpes simplex virus (HSV)-2.3–7 Trp is mainly catabolized 
through the enzymatic activity of indoleamine-2,3-dioxygenase 
(IDO) 1 and 2, which are expressed widely in human tissues, 

and induced by interferon gamma (IFN-γ).8 Immune dysfunc-
tion during human immunodeficiency virus (HIV) infection is 
also associated with increased Trp catabolism by IDO.9

KP can be considered to have equivocal roles, as IDO is 
known to induce inflammation, while it is also reported to be 
involved in the control of acute and chronic infections.10,11 The 
metabolic immune regulation of IDO involves the protection 
of the host from overreactive immune responses via the induc-
tion of systemic immune tolerance.12 Another mechanism of 
IDO activity is through interaction with ligand-dependent 
transcription factor aryl hydrocarbon receptor (AhR), a dioxin 
receptor that induces detoxifying enzymes and modulates 
immune cell differentiation after sensing environmental tox-
ins and endogenous ligands.13 AhR is also known to regu-
late chronic gut inflammation. The Trp catabolites that act as 
AhR ligands include kynurenine (Kyn), kynurenic acid, and 
tryptamine. A recent review has summarized several studies 
reporting the mechanisms by which IDO activity activates 
AhR leading to inhibition of colonization and induction of 
tolerance at the host–microbe mucosal interface.14

IDO is strongly induced by IFN-γ, which catalyzes the 
conversion of Trp into N-formylkynurenine.8 IDO-associated  
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Trp depletion is implicated in growth inhibition of certain 
bacteria,5 parasites,16 and is also associated with antiviral 
properties against several viruses to a lesser extent, including 
measles,17 herpes simplex type 1 and 2,6,18 and vaccinia virus.19 
In addition to this role in infection, altered Trp metabolism 
has an impact on immune responses such as during mater-
nal tolerance toward the fetus, immune-escape of cancer cells, 
and neurocognition.20,21 By inducing serotonin depletion, the 
KP has become recognized as a key player in the pathogenesis 
of several major neuroinflammatory brain conditions associ-
ated with chronic viral infections such as HIV, cytomegalo-
virus (CMV), and HSV.6,22–25 Recently, neuroinflammation 
has been reported to be regulated by the muscular enzymes 
kynurenine transaminases (KATs), which metabolize Kyn 
to nonbrain penetrating kynurenic acid.26 Herein, we have 
reviewed recent studies reporting modulation of Trp metabo-
lism in the context of chronic viral infections.

Trp Metabolism in Health and Disease: a Complex 
Interplay Between Microbiota, Muscle, Brain, and 
the Immune System
Trp is metabolized into several downstream physiologically 
active substances, including serotonin, melatonin, nicotinic 
acid, and nicotinamide adenine dinucleotide (NAD).1 The KP 
is the major Trp catabolizing pathway, regulated in human 
beings by three distinct enzymes: IDO-1 and IDO-2 induc-
ible in many tissues and tryptophan 2,3-dioxygenase (TDO) 
expressed in liver, brain, and cancer cells.1,2 In physiological 
conditions, TDO is the main enzyme degrading Trp, while in 
the context of infection, IDO-1 is induced and becomes the 
most important intracellular enzyme. Based on the health con-
dition, IDO or TDO leads to the production of Kyn, an immu-
nosuppressive derivative of Trp.1 (Fig. 1). Antigen-presenting 
cells such as macrophages, dendritic cells (DCs), and B-cells, 
as well as epithelial cells, deplete Trp by producing IDO-1,  
IDO-2, and TDO, resulting in a mechanism of defense 
against certain microorganisms.5 In contrast, the KP induces 
immunosuppression through induction of T-cell exhaustion 
and expansion of Tregs.27,28 Increased activity of the KP as 
measured by the ratio of Kyn to Trp in plasma (KT ratio) has 
also been associated with progressive AIDS9 and liver cirrho-
sis in hepatitis C virus (HCV) infection.29

Recent studies on gut microbiota have found an impor-
tant link between Trp metabolism and the mucosal/barrier 
interphase via microbial/toxin sensor AhR, a ligand-activated 
cytosolic transcription factor.13,30,31 AhR was found to create a 
positive feedback loop with IDO and Kyn to maintain a state 
of immune tolerance between commensal microbiota and the 
host.13,32 Nguyen et al reported that AhR induced IDO expres-
sion in DCs and that the expression of AhR was enhanced 
by stimulating the DCs with bacterial lipopolysaccharides 
(LPS).33 AhR contributes to immune homeostasis by hav-
ing an antimicrobial role through induction of interleukin-22 
(IL-22) transcription, and an anti-inflammatory role through 

mediating IDO-dependent differentiation of Tregs.14 IDO 
can also be induced by IFN-γ in response to Toll-like recep-
tor (TLR) and/or caspase inflammatory signals. Furthermore, 
IDO is the rate-limiting enzyme of the KP producing several 
metabolites, which are also AhR ligands.34 Kyn is one such 
catabolite that regulates immune homeostasis by acting as an 
AhR ligand, allowing for the generation of immunosuppres-
sive Tregs (Fig. 2).35,36

Trp Catabolism in HIV Infection: Dealing with a 
Dangerous Enemy
CD4 T-cell depletion and chronic immune activation are hall-
marks of HIV infection. Persistent immune activation despite 
suppressive antiretroviral therapy (ART) is associated with an 
increased risk of AIDS and non-AIDS related events, including 
cardiovascular, liver and kidney diseases, cancers, and altera-
tion of neurocognition.37 HIV is additionally capable of alter-
ing the gastrointestinal environment leading to changes in gut 
microbiota and mucosal permeability, which results in micro-
bial translocation contributing to systemic immune activation.38 
We and others have identified several factors implicated in HIV 
immune dysfunction, including programmed death-1 (PD-1), 
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4),39–41 
and, more recently, Trp catabolites.27,42–45 Trp degrading bacte-
ria present in the intestinal flora have been associated with the  
dysfunction of gut mucosal CD4 Th17/Th22 cells, leading to the 
creation of a systemic KP activation cycle. This self-sustaining  
loop between microbiota and IDO-expressing myeloid cells 
has harmful effects on disease progression and neurocognitive 
impairment in HIV-infected patients.22,24

In 1998, Huengsberg et al first reported an increased IDO 
activity, which was measured by the elevation of KT ratio in 
HIV-infected patients vs healthy subjects, thus suggesting the 
link between increased KP activity and HIV immune dys-
function.9 Microbial products and types I and II interferons 
(IFNs) induce IDO-1 in the context of HIV infection. Two Trp 
metabolites, Kyn and quinolinic acid (Quin), can be detected in 
the cerebrospinal fluid (CSF) of HIV-infected patients and are  
correlated with the severity of HIV-associated neurocognitive 
disorder (HAND) and infection of myeloid-derived cells in the 
brain.22,46 Drewes et al recently demonstrated that Quin and 
Trp ratios are capable of predicting neurological disease in the 
CSF of SIV-infected macaques even under effective ART.47 In 
addition, HIV proteins Tat, Nef, and gp41 have been reported 
to directly activate the KP through the production of neu-
rotoxic Quin in macrophages.48 A dose-dependent elevation 
of KT ratio in patients has been associated with severity of 
depression, and ART can partially revert this elevation lead-
ing to improvement in neurocognition.49

Several studies of Austrian, Ugandan, and Chinese 
cohorts of HIV-infected patients showed that 6–12  months 
of successful ART can reduce KT ratios by two folds,44,50,51 
while our group has shown a complete recovery after a decade 
of successful ART.27 In addition, we also showed that patients 
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treated in their early phase of HIV infection, normalized KT 
ratio in ,12 months of therapy. Importantly, the KT ratio was 
significantly associated with other soluble and cellular mark-
ers such as IL-6, IP10, IL-18, and tumor necrosis factor alpha 
(TNF-α and CD8+ T-cell activation even during the very 
early phase of HIV infection.42 Collectively, these findings 
indicate that the KT ratio represents an independent marker 
of disease progression linked to CD4 T-cell counts, level of 
T-cell activation, inflammatory markers, and viral load.27,42,44

Trp Metabolism in Viral Hepatitis: Damaging the 
Firewall for Immune Activation
IDO induction in chronic viral infections is considered to be 
the main cause of the decreased serum Trp levels. Cozzi et al 
studied patients chronically infected by HCV or hepatitis B virus 
(HBV) who were found to have lower serum Trp concentra-
tions than healthy volunteers.45 Furthermore, Comai et al con-
firmed the decrease of Trp in HCV-infected patients as well as 
a decline of serotonin pathway, contributing to the development 
of depressive symptoms in HCV patients undergoing IFN-a 
therapy.52 Using primary human hepatocytes, Lepiller et  al  
showed that HCV infection stimulates IDO expression and 

concurred with the expression of types I and III IFNs and 
IFN-stimulated genes.53 These study findings showed that 
HCV infection directly induced IDO and IFN expression.

Like in HIV, ineffective cytotoxic T-lymphocyte (CTL)  
responses have been reported in chronic HBV and HCV 
infections.54–56 However, in vitro, IDO activity, when induced 
by IFN-γ, was not found to modify HCV replication in 
Huh7 cells, which are a hepatocellular carcinoma cell line.54 
It was speculated that IDO activity suppresses an overactive 
immune response triggered by TNF-α-producing NK-cells 
and macrophages infiltrating the liver. Following the con-
cept of reestablishing immunocompetent CTLs, wild-type 
and IDO knockout (KO) mice were immunized with a com-
bination of α-GalCer and HBsAg.55 IDO KO mice showed 
an increased expression of IL-2 and IL-12 after immuniza-
tion, leading to the induction of HBsAg-specific CTLs. An 
increase in the number of IDO-expressing CD11b+ Ly6G+ 
myeloid-derived suppressor cells was observed postimmuniza-
tion in spleen, which was associated with suppression of CTL. 
Another study determined the role of IFN-induced genes in 
vitro and identified IDO as the major mediator of the IFN-γ-
induced antiviral response in HBV infection.57
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High plasma KT ratios have been reported in association 
with increased IDO expression in hepatocytes and DCs 
infected with HBV and HCV.56,58 Higashitani et al demon-
strated that Kyn levels correlated with advanced liver conditions 
such as fibrosis.58 Systemic effects resulting from induction of 
KP have been reported in monocytes isolated from PBMCs 
obtained from HCV-positive patients. When activated with 
LPS or INF-γ, these cells were shown to differentiate into 
IDO-expressing DCs capable of a more potent Treg induc-
tion (Fig. 2).58 We also recently reported that in ART-treated 
HIV/HCV coinfected patients, elevated plasma levels of KT 
ratio were present only for those presenting with liver fibrosis.59  
The liver is now considered to serve as a “firewall” to filter gut 
microbial products, such as LPS that egress to systemic vascu-
lar circuits in patients with fibrosis.60,61 The phagocytic Kupffer 
and stellate cells are activated via an exaggerated LPS/TLR-4  
interaction and in turn induce the KP.60,62 Fibrosis can be 
linked with a major dysfunction of the liver TLR-4-AhR-
TDO-IDO microbial model, contributing to the breakdown 
of endotoxin and disease tolerance defense.

The Pitfalls of Trp Degradation in Herpesviridae 
Infections

Herpes viruses. Human herpes simplex virus type 1  
(HSV-1) and HSV-2 are members of the Herpesviridae fam-
ily, which establish latency in neural ganglia. HSV-2 is the 

primary cause of genital herpes lesions and establishes a life-
long latent infection in the neurons of the sacral ganglia, 
which can be reactivated depending on the host immune 
response.63,64 IFN-γ production remains a key element of 
defense against HSV infection, capable of inhibiting virus rep-
lication.65 Adams et al demonstrated using HeLa and astro-
cytoma cell lines that IFN-γ-induced IDO activity acts as a 
potent antiviral effector mechanism against HSV-2 infection. 
They further reported that excess Trp is capable of abrogat-
ing the antiviral effect of IFN-γ.6 In a mouse model of HSV 
infection, increased activity of IDO and Kyn hydroxylase were 
reported.66 Both of these enzymes are required for the forma-
tion of the neurotoxin Quin.

Cytomegalo virus. Human infection with CMV, another 
member of the Herpesviridae family, also persists for life by 
counteracting IFN-mediated antiviral defense.67–69 CMV 
infection remains latent within the body and can be reacti-
vated by severe immunosuppressive states like HIV infec-
tion, cancers, and following an organ transplant. Bodaghi 
et  al revealed that IFN-γ-induced IDO activity inhibited 
the replication of CMV in human retinal pigment epithelial 
cells and that supplementation of Trp blocked the antiviral 
effect.70,71 Additionally, IDO was proposed to represent the 
prime effector restricting CMV growth in cells downstream 
from IFN-γ induction.70 The IFN-γ-dependent iNOS path-
way was reported as being blocked by CMV infection, further 
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strengthening the belief that a selective IFN-γ induction of 
IDO is modified by CMV. An increase in IDO activity in 
vivo has been described during infection, as well as in patients 
receiving IFN-γ therapy.72 However, it has also been reported 
that IDO induction in vivo results in an inhibition of T-cell 
activation and proliferation.35 Given that T-cells are the 
main producers of IFN-γ and that their activation is neces-
sary to maintain defense against viruses, IDO activity would 
be expected to have a negative effect on the activation of an 
antiviral defense. However, a recent report indicated that 
CMV infection itself might induce IDO expression through 
an IFN-γ like transcriptional response mediated by the viral 
immediate early 1/pp72 protein.73

Zimmermann et  al have recently demonstrated that 
CMV rigorously controls the IFN-γ-dependent induction of 
IDO at the level of IDO mRNA transcription in epithe-
lial cells and fibroblasts.67 CMV infection abrogated IDO-
mediated immunosuppressive properties of human fibroblasts 
in coculture with activated T-cells.74 In addition, Sadeghi 
et al investigated the clinical relevance of plasma Trp and its 
metabolites (Kyn and Quin) in kidney transplant recipients 
with CMV or polyomavirus BK (BKV) infection.23 Both 
Kyn and Quin levels were increased in CMV infection and 
associated with the severity of infection, highlighting their 
role as biomarkers for disease progression. Human mesen-
chymal stromal cells (MSCs) have potential as a novel cel-
lular immunosuppressant to control steroid-refractory acute 
graft versus host disease (GvHD) because of their increased 
IDO activity that would lead to immunosuppressive and 
antimicrobial effects. However, Meisel et al recently reported 
that CMV is a major negative regulator of IDO activity in 
human MSCs, and therefore undermines the clinical efficacy 
of MSC treatment in stem cell transplant recipients.75

Epstein–Barr virus. Infectious mononucleosis is the 
most common clinical manifestation of infection with 
Epstein–Barr virus (EBV), another widely spread herpesvi-
rus family member that is also associated with malignancies 
such as Burkitt’s lymphoma and nasopharyngeal carcinoma 
in human beings.76 EBV is known for its epithelial and B-cell 
tropism and also infects monocytes/macrophages, intraepi-
thelial macrophages, and Langerhans cells. EBV-infected 
monocytes demonstrate a suppression of phagocytic activity 
and potent antiviral activity,77 further leading to apoptosis and 
an inhibition of their differentiation into DCs.78 Song et  al 
reported a role for EBV infection in the modulation of Trp 
metabolism through increased expression of IDO in B-cells, 
translating into decreased NK-cell cytotoxicity.79 Liu et  al 
found that macrophages in tumor stroma express significantly 
higher amounts of IDO in comparison to tumor cells induced 
by infection with EBV.80 They also showed that EBV-induced 
IDO expression of macrophages suppressed T-cell prolifera-
tion, impaired the cytotoxic activity of CD8 T-cells, and was 
dependent on TNF-α and IL-6  secretion. IDO induction 
during chronic active EBV infection is also associated with 

decreased serotonin levels leading to symptoms, including 
mood disturbances.52 All these observations point to the con-
tribution of the KP on disease tolerance and may have a major 
impact in HIV-infected patients or transplant recipients who 
have concomitant chronic viral infections in the context of 
severe immunosuppression.

Therapeutic Options for Modulation of the KP to 
Improve Patient Outcomes
Interventions to normalize KP should include direct IDO/
TDO inhibitors as well as modulation of factors contributing 
to its induction such as gut microbiota composition and gut 
epithelial damage. A competitive inhibitor of IDO, 1-methyl-
tryptophan (1-MT), induced transitory neurological protection 
after LPS challenge in CX3CL1−/− mice.81 In another mouse 
model, 1-MT was able to reduce by 90% the number of HIV-
infected macrophages in the brain.82 However, disappointing 
results were reported with 1-MT used in SIV-infected rhesus 
macaques on ART.83,84 New IDO inhibitors are under develop-
ment as anticancer agents, and some are currently under assess-
ment in clinical trials, including INCB024360 and indoximod 
(D-1-methyl-tryptophan), combined with chemotherapy.85–87 
Another emerging area is the combination of immune thera-
pies involving the simultaneous blockade of PD-1, CTLA-4 
nonredundant pathways, and IDO expression for myeloid/T-
cell interactions that may significantly revert the immune 
system, as has been reported in mouse cancer models.88 In can-
cer patients, a recent study reported IDO-specific T-cells to 
influence adaptive immune reactions, while vaccination with 
IDO-derived epitope in a phase I clinical trial showed long-
lasting disease stabilization without toxicity.89,90 An alternative 
Trp-degrading enzyme TDO, which is not inhibited by 1-MT 
and is mainly expressed in the liver or brain, requires a specific 
inhibitor to normalize KP activity. TDO inhibition research 
is just starting and is limited to mouse cancer animal mod-
els.91 These studies will result in novel therapeutic options for 
treating patients with chronic viral infections because of mul-
tiple similarities between cancer and infection as both induce 
immune activation and inflammation.92

The general findings indicate that the Trp catabolic path-
way is an important link between microbiome and systemic 
immune activation, which further worsens in chronic viral 
infections. The microbiota can also influence the immune sys-
tem by stimulating the AhR through Trp catabolites.

A recent study on a mouse colitis model showed  
6-formylindolo-(3,2-b)-carbazole (Ficz), which is a Trp catab-
olite and an AhR ligand, to suppress epithelial IL-7 secretion 
improving the gut inflammation.93 Ficz was also associated 
with a decrease in the percentage of activated CD4 and CD8 
T-cells. These findings suggest AhR inhibitors as promising 
therapeutic interventions to be considered in a variety of con-
ditions, including chronic viral infections.

Natural products such as curcumin, green tea, resvera-
trol, and rosemary have been found to downregulate IDO 
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expression via JAK/STAT kinase pathways.94–97 Interestingly, 
Gostner et  al98 recently reported a dose-dependent suppres-
sion of Trp breakdown by extracts of coffee and decaffeinated 
coffee in PBMCs stimulated with mitogen.98 Translational 
research, bridging fundamental research with clinical inves-
tigations in the field of Infectious Diseases, Oncology, and 
Inflammation, will be needed to provide effective KP-based 
therapy.

Conclusion
Trp starvation plays a limited role in mechanisms of host resis-
tance to viral infection when compared to its more extensive 
protective contribution in certain bacterial or parasitic infec-
tions.99 However, in the absence of viral clearance, IDO 
activation could pose an acceptable compromise for the host 
to prevent overwhelming tissue destruction at the expense of 
inhibition of antiviral T-cell responses and expansion of Tregs. 
IDO overexpression by antigen-presenting cells contributes 
to withdrawal of the virus from immune surveillance, lead-
ing to disease tolerance. The studies outlined herein indicate 
the important role of Trp metabolism via IDO/AhR in the 
host response to chronic viral infection, and its major role 
in infections such as HIV, HBV, and HCV where systemic 
immune activation is most elevated. The identification of the 
“environmental/microbial” sensor AhR, that induces IDO 
expression,33 represents an important finding, which may pave 
the way for targeted therapeutic interventions. New direc-
tions include further examination into Trp immune-metabolic 
pathway inhibitors, as well as the possibility of combination 
therapy with nonredundant immune checkpoint inhibitors 
such as those targeting the PD-1, TIM-3, and CTLA4 path-
ways.87,92 Such immunological approach in chronic viral infec-
tions using immune check point inhibitors and/or IL-7 may 
result in different toxicities as compared to cancer patients.7,100 
Future studies on Trp metabolism will be fruitful for enhanc-
ing vaccine responses and designing therapeutic approaches 
to prevent and potentially cure chronic viral infections as well 
as other debilitating conditions such as autoimmune disorders 
and cancer.
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