Selected References

Indole-3-Propionic Acid

1. Chyan, Y.J., B. Poeggeler, R.A. Omar, D.G. Chain, B. Frangione, J. Ghiso, and M.A. Pappolla, Potent neuroprotective properties against the Alzheimer beta-amyloid by an endogenous melatonin-related indole structure, indole-3-propionic acid. J Biol Chem, 1999. 274(31): p. 21937-42.

2. Venkatesh, M., S. Mukherjee, H. Wang, H. Li, K. Sun, A.P. Benechet, Z. Qiu, L. Maher, M.R. Redinbo, R.S. Phillips, J.C. Fleet, S. Kortagere, P. Mukherjee, A. Fasano, J. Le Ven, J.K. Nicholson, M.E. Dumas, K.M. Khanna, and S. Mani, Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity, 2014. 41(2): p. 296-310.

3. Wikoff, W.R., A.T. Anfora, J. Liu, P.G. Schultz, S.A. Lesley, E.C. Peters, and G. Siuzdak, Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A, 2009. 106(10): p. 3698-703.

4. Zhang, L.S. and S.S. Davies, Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions. Genome Med, 2016. 8(1): p. 46.

Indole-3-Lactic Acid

5. KEGG Pathway Database '' May 15 2017.

6. Aragozzini, F., A. Ferrari, N. Pacini, and R. Gualandris, Indole-3-lactic acid as a tryptophan metabolite produced by Bifidobacterium spp. Appl Environ Microbiol, 1979. 38(3): p. 544-6.

7. Suzuki, Y., M. Kosaka, K. Shindo, T. Kawasumi, H. Kimoto-Nira, and C. Suzuki, Identification of antioxidants produced by Lactobacillus plantarum. Biosci Biotechnol Biochem, 2013. 77(6): p. 1299-302.

Indole-3-Acetic Acid

8. Honeyfield, D.C. and J.R. Carlson, Effect of Indoleacetic Acid and Related Indoles on Lactobacillus sp. Strain 11201 Growth, Indoleacetic Acid Catabolism, and 3-Methylindole Formation. Appl Environ Microbiol, 1990. 56(5): p. 1373-7.

9. Patten, C.L., A.J. Blakney, and T.J. Coulson, Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria. Crit Rev Microbiol, 2013. 39(4): p. 395-415.

10. Poesen, R., H.A. Mutsaers, K. Windey, P.H. van den Broek, V. Verweij, P. Augustijns, D. Kuypers, J. Jansen, P. Evenepoel, K. Verbeke, B. Meijers, and R. Masereeuw, The Influence of Dietary Protein Intake on Mammalian Tryptophan and Phenolic Metabolites. PLoS One, 2015. 10(10): p. e0140820.

11. Boltze, K.H., O. Brendler, H. Jacobi, W. Opitz, S. Raddatz, P.R. Seidel, and D. Vollbrecht, [Chemical structure and anti-inflammatory activity in the group of substituted indole-3-acetic acids (author's transl)]. Arzneimittelforschung, 1980. 30(8A): p. 1314-25.


12. Fernstrom, J.D., Role of precursor availability in control of monoamine biosynthesis in brain. Physiol Rev, 1983. 63(2): p. 484-546.

13. Schaechter, J.D. and R.J. Wurtman, Serotonin release varies with brain tryptophan levels. Brain Res, 1990. 532(1-2): p. 203-10.

14. Oxenkrug, G.F., Tryptophan kynurenine metabolism as a common mediator of genetic and environmental impacts in major depressive disorder: the serotonin hypothesis revisited 40 years later. Isr J Psychiatry Relat Sci, 2010. 47(1): p. 56-63.

15. Jacobson, E.L., H. Kim, M. Kim, J.D. Williams, D.L. Coyle, W.R. Coyle, G. Grove, R.L. Rizer, M.S. Stratton, and M.K. Jacobson, A topical lipophilic niacin derivative increases NAD, epidermal differentiation and barrier function in photodamaged skin. Exp Dermatol, 2007. 16(6): p. 490-9.

16. Niacin '' July 2013.


17. Berger, M., J.A. Gray, and B.L. Roth, The expanded biology of serotonin. Annu Rev Med, 2009. 60: p. 355-66.

18. Clarke, G., R.M. Stilling, P.J. Kennedy, C. Stanton, J.F. Cryan, and T.G. Dinan, Minireview: Gut microbiota: the neglected endocrine organ. Mol Endocrinol, 2014. 28(8): p. 1221-38.

19. Toker, L., S. Amar, Y. Bersudsky, J. Benjamin, and E. Klein, The biology of tryptophan depletion and mood disorders. Isr J Psychiatry Relat Sci, 2010. 47(1): p. 46-55.

20. Young Simon N., How to increase serotonin in the human brain without drugs. Journal of Psychiatry & Neuroscience, 2007. 32(6): p. 394-399.


21. Davis, I. and A. Liu, What is the tryptophan kynurenine pathway and why is it important to neurotherapeutics? Expert Rev Neurother, 2015. 15(7): p. 719-21.

22. Gulaj, E., K. Pawlak, B. Bien, and D. Pawlak, Kynurenine and its metabolites in Alzheimer's disease patients. Adv Med Sci, 2010. 55(2): p. 204-11.

23. Wang, Q., D. Liu, P. Song, and M.H. Zou, Tryptophan-kynurenine pathway is dysregulated in inflammation, and immune activation. Front Biosci (Landmark Ed), 2015. 20: p. 1116-43.

24. Chen, Y. and G.J. Guillemin, Kynurenine pathway metabolites in humans: disease and healthy States. Int J Tryptophan Res, 2009. 2: p. 1-19.

Indoxyl Sulfate

25. Barreto, F.C., D.V. Barreto, S. Liabeuf, T.B. Drueke, and Z.A. Massy, Effects of uremic toxins on vascular and bone remodeling. Semin Dial, 2009. 22(4): p. 433-7.

26. Barreto, F.C., D.V. Barreto, S. Liabeuf, N. Meert, G. Glorieux, M. Temmar, G. Choukroun, R. Vanholder, Z.A. Massy, and G. European Uremic Toxin Work, Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin J Am Soc Nephrol, 2009. 4(10): p. 1551-8.

27. Hirata, J., K. Hirai, H. Asai, C. Matsumoto, M. Inada, C. Miyaura, H. Yamato, and M. Watanabe-Akanuma, Indoxyl sulfate exacerbates low bone turnover induced by parathyroidectomy in young adult rats. Bone, 2015. 79: p. 252-8.

28. Leong, S.C. and T.L. Sirich, Indoxyl Sulfate-Review of Toxicity and Therapeutic Strategies. Toxins (Basel), 2016. 8(12).


29. Fernstrom, J.D., Can nutrient supplements modify brain function? Am J Clin Nutr, 2000. 71(6 Suppl): p. 1669S-75S.

30. Deijen, J.B. and J.F. Orlebeke, Effect of tyrosine on cognitive function and blood pressure under stress. Brain Res Bull, 1994. 33(3): p. 319-23.

31. Meyers, S., Use of neurotransmitter precursors for treatment of depression. Altern Med Rev, 2000. 5(1): p. 64-71.

32. Pessione, E. and S. Cirrincione, Bioactive Molecules Released in Food by Lactic Acid Bacteria: Encrypted Peptides and Biogenic Amines. Front Microbiol, 2016. 7: p. 876.

33. Tyrosine '' Univ. of Maryland Medical Center, July 16 2013.


34. Lee, I.A., A. Kamba, D. Low, and E. Mizoguchi, Novel methylxanthine derivative-mediated anti-inflammatory effects in inflammatory bowel disease. World J Gastroenterol, 2014. 20(5): p. 1127-38.

35. Shearer, J., Methodological and metabolic considerations in the study of caffeine-containing energy drinks. Nutr Rev, 2014. 72 Suppl 1: p. 137-45.

36. Daly, J.W., Caffeine analogs: biomedical impact. Cell Mol Life Sci, 2007. 64(16): p. 2153-69.


37. Tilley, S.L., Methylxanthines in asthma. Handb Exp Pharmacol, 2011(200): p. 439-56.

38. Mercer, J.R., K. Gray, N. Figg, S. Kumar, and M.R. Bennett, The methyl xanthine caffeine inhibits DNA damage signaling and reactive species and reduces atherosclerosis in ApoE(-/-) mice. Arterioscler Thromb Vasc Biol, 2012. 32(10): p. 2461-7.

Uric Acid

39. Borghi, C., F.M. Verardi, I. Pareo, C. Bentivenga, and A.F. Cicero, Hyperuricemia and cardiovascular disease risk. Expert Rev Cardiovasc Ther, 2014. 12(10): p. 1219-25.

40. Fang, P., X. Li, J.J. Luo, H. Wang, and X.F. Yang, A Double-edged Sword: Uric Acid and Neurological Disorders. Brain Disord Ther, 2013. 2(2): p. 109.

41. Pak, C.Y., Medical stone management: 35 years of advances. J Urol, 2008. 180(3): p. 813-9.

42. Pradere, B., B. Peyronnet, C. Brochard, E. Le Balc'h, C. Vigneau, L. Siproudhis, O. Traxer, and K. Bensalah, [Urinary stones and bowel diseases: Systematic review]. Prog Urol, 2015. 25(10): p. 557-64.

43. Costa, A., I. Iguala, J. Bedini, L. Quinto, and I. Conget, Uric acid concentration in subjects at risk of type 2 diabetes mellitus: relationship to components of the metabolic syndrome. Metabolism, 2002. 51(3): p. 372-5.