Ixcela Report Citations

Metabolites

Indole-3-propionic acid (IPA)

1. Chyan, Yau-Jan, et al. “Potent Neuroprotective Properties against the Alzheimer β-Amyloid by an Endogenous Melatonin-Related Indole Structure, Indole-3-Propionic Acid.” Journal of Biological Chemistry, vol. 274, no. 31, 1999, pp. 21937-21942. doi: 10.1074/jbc.274.31.21937. www.jbc.org/content/274/31/21937.

2. Wikoff, William R., et al. “Metabolomics Analysis Reveals Large Effects of Gut Microflora on Mammalian Blood Metabolites.” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 10, 2009, pp. 3698-3703. doi: 10.1073/pnas.0812874106. www.ncbi.nlm.nih.gov/pmc/articles/PMC2656143/.

3. Kaufmann, Stefan H. E. “Indole Propionic Acid: a Small Molecule Links between Gut Microbiota and Tuberculosis.” Antimicrobial Agents and Chemotherapy, vol. 62, no. 5, 2018. doi: 10.1128/AAC.00389-18. aac.asm.org/content/62/5/e00389-18.


Indole-3-acetic acid (IAA)

4. Patten, Cheryl L., et al. “Activity, Distribution and Function of Indole-3-Acetic Acid Biosynthetic Pathways in Bacteria.” Critical Reviews in Microbiology, vol. 39, no. 4, 2012, pp. 395-415. https://doi.org/10.3109/1040841X.2012.716819.

5. Abdul Rahim, M., et al. “Diet-Induced Metabolic Changes of the Human Gut Microbiome: Importance of Short-Chain Fatty Acids, Methylamines and Indoles.” Acta Diabetologica, vol. 56, no. 5, 2019, pp. 493-500. doi: 10.1007/s00592-019-01312-x. www.ncbi.nlm.nih.gov/pmc/articles/PMC6451719/.

6. Gao, Jing, et al. “Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism.” Frontiers in Cellular and Infection Microbiology, vol. 8, no. 13, 2018. doi: 10.3389/fcimb.2018.00013. www.ncbi.nlm.nih.gov/pmc/articles/PMC5808205/.

Indole-3-lactic acid (ILA)

7. Roager, Henrik M., et al. “Microbial Tryptophan Catabolites in Health and Disease.” Nature Communications, vol. 9, no. 3294, 2018. https://doi.org/10.1038/s41467-018-05470-4.

Tryptophan (TRP)

8. Davis, Ian and Liu, Aimin. “What Is the Tryptophan Kynurenine Pathway and Why Is It Important to Neurotherapy?” Expert Review of Neurotherapeutics, vol. 15, no. 7, 2015, pp. 719-721. doi: 10.1586/14737175.2015.1049999. www.ncbi.nlm.nih.gov/pmc/articles/PMC4482796.

9. Hinz, Marty, et al. “5-HTP Efficacy and Contraindications.” Neuropsychiatric Disease and Treatment, vol. 8, 2012, pp. 323-328. doi: 10.2147/NDT.S33259. www.ncbi.nlm.nih.gov/pmc/articles/PMC3415362/.

10. O’Mahony, S.M., et al. “Serotonin, Tryptophan Metabolism and the Brain-Gut-Microbiome Axis.” Behavioural Brain Research, vol. 277, 2015, pp. 32-48. https://doi.org/10.1016/j.bbr.2014.07.027.

11. Griffiths, William J., et al. “Tryptophan and Sleep in Young Adults.” Society for Psychophysiological Research, vol. 9, no. 3, 1972, pp. 345-356. https://doi.org/10.1111/j.1469-8986.1972.tb03218.x.

Serotonin (SER)

12. Bornstein, Joel C. “Serotonin in the Gut: What Does It Do?” Frontiers in Neuroscience, vol. 6, no. 16, 2012. doi: 10.3389/fnins.2012.00016. www.ncbi.nlm.nih.gov/pmc/articles/PMC3272651/.

13. Frazer, Alan and Hensler, Julie G. “Serotonin Involvement in Physiological Function and Behavior.” Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 6th Edition, 1999, www.ncbi.nlm.nih.gov/books/NBK27940/.

14. Yano, Jessica M., et al. “Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis.” Cell, vol. 161, no. 2, 2015, pp. 264-276. doi: 10.1016/j.cell.2015.02.047. www.ncbi.nlm.nih.gov/pmc/articles/PMC4393509/.

15. Gardier, Alain. “Mechanism of Action of Antidepressant Drugs: Importance of Genetically Modified Mice in the Pharmacological in Vivo Approach.” Therapie, vol. 60, no. 5, 2005, pp. 469-476. https://doi.org/10.2515/therapie:2005067.

Kynurenine (KYN)

16. Davis, Ian and Liu, Aimin. “What Is the Tryptophan Kynurenine Pathway and Why Is It Important to Neurotherapeutics?” Expert Review of Neurotherapeutics, vol. 15, no. 7, 2015, pp. 719-721. doi: 10.1586/14737175.2015.1049999. www.ncbi.nlm.nih.gov/pmc/articles/PMC4482796/.

17. Gao, Jing, et al. “Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism.” Frontiers in Cellular and Infection Microbiology, vol. 8, no. 13, 2018. doi: 10.3389/fcimb.2018.00013. www.ncbi.nlm.nih.gov/pmc/articles/PMC5808205/.

18. Waclawiková, Barbora and El Aidy, Sahar. “Role of Microbiota and Tryptophan Metabolites in the Remote Effect of Intestinal Inflammation on Brain and Depression.” Pharmaceuticals (Basel, Switzerland), vol. 11, no. 3, 2018. doi: 10.3390/ph11030063. www.ncbi.nlm.nih.gov/pmc/articles/PMC6160932/.

19. Rudzki, Leszek, et al. “Probiotic Lactobacillus Plantarum 299v Decreases Kynurenine Concentration and Improves Cognitive Functions in Patients with Major Depression: A Double-Blind, Randomized, Placebo-Controlled Study.” Psychoneuroendocrinology, vol. 100, 2019, pp. 213-222. www.sciencedirect.com/science/article/abs/pii/S0306453018302695.

20. Rogers, G.B., et al. “From Gut Dysbiosis to Altered Brain Function and Mental Illness: Mechanisms and Pathways.” Molecular Psychiatry, vol. 21, 2016, pp. 738-748. https://doi.org/10.1038/mp.2016.50.

21. Majewski, M., et al. “Overview of the Role of Vitamins and Minerals on the Kynurenine Pathway in Health and Diseases.” Journal of Physiology and Pharmacology, vol. 67, no. 1, 2016, pp. 3-19. www.researchgate.net/publication/284717312.

Total indoxyl sulfate (IDS)

22. Huć, T., et al. “Indole and Indoxyl Sulfate, Gut Bacteria Metabolites of Tryptophan, Change Arterial Blood Pressure via Peripheral and Central Mechanisms in Rats.” Pharmacological Research, vol. 130, 2018, pp. 172-179. https://doi.org/10.1016/j.phrs.2017.12.025.

23. Leong, Sheldon C. and Sirich, Tammy L. “Indoxyl Sulfate-Review of Toxicity and Therapeutic Strategies.” Toxins (Basel), vol. 8, no. 12, 2016, pp. 358. doi: 10.3390/toxins8120358. www.ncbi.nlm.nih.gov/pmc/articles/PMC5198552/.


24. Hénaut, Lucie, et al. “The Impact of Uremic Toxins on Vascular Smooth Muscle Cell Function.” Toxins (Basel), vol. 10, no. 6, 2018, pp. 218. doi: 10.3390/toxins10060218. www.ncbi.nlm.nih.gov/pmc/articles/PMC6024314/.


190. Praschberger, Monika, et al. “The Uremic Toxin Indoxyl Sulfate Acts as a pro- or Antioxidant on LDL Oxidation.” Free Radical Biology & Medicine, U.S. National Library of Medicine, Oct. 2014, doi.org/10.1016/j.freeradbiomed.2014.10.778.


Xanthine (XAN)

25. “Xanthine - Topic Overview.” ScienceDirect, https://www.sciencedirect.com/topics/medicine-and-dentistry/xanthine.

26. Boekema, P.J., et al. “Coffee and Gastrointestinal Function: Facts and Fiction. A Review.” Scandinavian Journal of Gastroenterology, Supplement, vol. 230, 1999, pp. 35-39. doi: 10.1080/003655299750025525. www.ncbi.nlm.nih.gov/pubmed/10499460.

27. Sanchis-Gomar, F., et al. “Effects of Acute Exercise and Xanthine Oxidase Inhibition on Novel Cardiovascular Biomarkers.” Translational Research: The Journal of Laboratory and Clinical Medicine, vol. 162, no. 2, 2013, pp. 102-109. doi: 10.1016/j.trsl.2013.02.006. www.ncbi.nlm.nih.gov/pubmed/23507375.


3-Methylxanthine (3MXAN)

28. Ashihara, Hiroshi, et al. “Metabolism of Caffeine and Related Purine Alkaloids in Leaves of Tea ( Camellia Sinensis L.).” Plant and Cell Physiology, vol. 38, no. 4, 1997, pp. 413-419. https://doi.org/10.1093/oxfordjournals.pcp.a029184.

29. “Compound Summary 3-Methylxanthine.” National Center for Biotechnology Information: PubChem Compound Database, https://pubchem.ncbi.nlm.nih.gov/compound/3-Methylxanthine.

30. Liszt, Kathrin Ingrid, et al. “Caffeine Induces Gastric Acid Secretion via Bitter Taste Signaling in Gastric Parietal Cells.” Proceedings of the National Academy of Sciences of the United States of America, vol. 114, no. 30, 2017, pp. 6260-6269. doi: 10.1073/pnas.1703728114. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5544304/.

Uric acid (UA)

31. Maiuolo, Jessica, et al. “Regulation of Uric Acid Metabolism and Excretion.” International Journal of Cardiology, vol. 213, 2016, pp. 8-14. https://doi.org/10.1016/j.ijcard.2015.08.109.

32. Yu, Yiran, et al. “Alterations of the Gut Microbiome Associated With the Treatment of Hyperuricaemia in Male Rats.” Frontiers in Microbiology, vol. 9, no. 2233, 2018. doi: 10.3389/fmicb.2018.02233. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156441/.

33. Garcia-Gil, M., et al. “Emerging Role of Purine Metabolizing Enzymes in Brain Function and Tumors.” International Journal of Molecular Sciences, vol. 19, no. 11, 2018. doi: 10.3390/ijms19113598. https://www.ncbi.nlm.nih.gov/pubmed/30441833.

191. Ames, BN, et al. “Uric Acid Provides an Antioxidant Defense in Humans against Oxidant- and Radical-Caused Aging and Cancer: a Hypothesis.” Proceedings of the National Academy of Sciences of the United States of America, U.S. National Library of Medicine, Nov. 1981, doi.org/10.1073/pnas.78.11.6858.


Tyrosine (TYR)

34. Fernstrom, J.D. “Dietary Amino Acids and Brain Function.” Journal of the American Dietetic Association, vol. 94, no. 1, 1994, pp. 71-77. https://doi.org/10.1016/0002-8223(94)92045-1.

35. Van Kessel, Sebastiaan P., et al. “Gut Bacterial Tyrosine Decarboxylases Restrict the Bioavailability of Levodopa, the Primary Treatment in Parkinson's Disease.” Nature Communications, vol. 10, no. 1, 2019, pp. 310. doi: 10.1038/s41467-019-08294-y. https://www.biorxiv.org/content/10.1101/356246v1.

36. Khaliq, W., et al. “Reductions in Tyrosine Levels Are Associated with Thyroid Hormone and Catecholamine Disturbances in Sepsis.” Intensive Care Medicine Experimental, vol. 3, 2015. doi: 10.1186/2197-425X-3-S1-A686. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4798095/.

37. “NIH - Genetics Home Reference - Tyrosinemia.” U.S. National Library of Medicine, https://ghr.nlm.nih.gov/condition/tyrosinemia.

Nutrition Recommendations

(1) Fiber:

38. Fooks, Laura J. et al. "Prebiotics, Probiotics and Human Gut Microbiology. International Dairy Journal, vol. 9, no. 1, 1999, pp. 53-61. doi: 10.1016/s0958-6946(99)00044-8. https://www.sciencedirect.com/science/article/abs/pii/S0958694699000448.

39. Agus, Allison, et al. "Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease." Cell Host & Microbe, vol. 23, no. 6, 2018, pp. 716-724. doi: 10.1016/j.chom.2018.05.003. https://www.sciencedirect.com/science/article/pii/S1931312818302579.

40. Makki, Kassem, et al. "The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease." Cell Host & Microbe, vol. 23, no. 6, 2018, pp. 705-715. doi: 10.3410/f.733450095.793569645. https://www.sciencedirect.com/science/article/pii/S193131281830266X.

41. Slavin, Joanne. "Fiber and Prebiotics: Mechanisms and Health Benefits." Nutrients, vol. 5, no. 4, 2013, pp. 1417-1435. doi: 10.3390/nu5041417.https://www.mdpi.com/2072-6643/5/4/1417/htm?fbclid=IwAR1ktR-gsIbdTVI7eWnGcU3U3S7JFSmG1gLJcclInfUIHhkUSK4q5rWBHIk.

42. Roager, H. M. and Licht, Tine R. "Microbial Tryptophan Catabolites in Health and Disease." Nature Communications, vol. 9, no. 3294, 2018. doi: 10.1038/s41467-018-05470-4. https://www.nature.com/articles/s41467-018-05470-4#.

43. Fetissov, Sergueï O., et al. "Autoantibodies Against Appetite-Regulating Peptide Hormones and Neuropeptides: Putative Modulation by Gut Microflora." Nutrition, vol. 24, no. 4, 2008, pp. 348-359. doi: 10.1016/j.nut.2007.12.006. https://www.sciencedirect.com/science/article/pii/S0899900707003814.

44. Gertsman, Ilya, et al. "Perturbations of Tyrosine Metabolism Promote the Indolepyruvate Pathway via Tryptophan in Host and Microbiome." Molecular Genetics and Metabolism, vol. 114, no. 3, 2015, pp. 431-437. https://doi.org/10.1016/j.ymgme.2015.01.005.


45. Strasser, Barbara, et al. "Kynurenine Pathway Metabolism and Immune Activation: Peripheral Measurements in Psychiatric and Co-Morbid Conditions." Neuropharmacology, vol. 112, 2017, pp. 286-296. https://doi.org/10.1016/j.neuropharm.2016.02.030.


46. Wurtman, Richard, et al. "Effects of Normal Meals Rich in Carbohydrates or Proteins on Plasma Tryptophan and Tyrosine Ratios." The American Journal of Clinical Nutrition, vol. 77, no. 1, 2003, pp. 128-132. https://doi.org/10.1093/ajcn/77.1.128.

(2) Fermented Foods:

47. Holscher, Hannah D. "Dietary Fiber and Prebiotics and the Gastrointestinal Microbiota." Gut Microbes, vol. 8, no. 2, 2017, pp. 172-184. doi: 10.1080/19490976.2017.1290756. https://www.tandfonline.com/doi/full/10.1080/19490976.2017.1290756.

48. Lin, C.S., et al. “Impact of the Gut Microbiota, Prebiotics, and Probiotics on Human Health and Disease.” Biomed Journal, vol. 37, no. 5, 2014, pp. 259-268. doi: 10.4103/2319-4170.138314 https://www.ncbi.nlm.nih.gov/pubmed/25179725.

49. Codella, R., et al. "Exercise Has The Guts: How Physical Activity May Positively Modulate Gut Microbiota in Chronic and Immune-Based Diseases." Digestive and Liver Disease, vol. 50, no. 4, 2018, pp. 331-341. doi: 10.1016/j.dld.2017.11.016. https://www.sciencedirect.com/science/article/pii/S1590865817313129.

50. Fung, Thomas C., et al. "Interactions Between the Microbiota, Immune and Nervous Systems in Health and Disease." Nature Neuroscience, vol. 20, no. 2, 2017, pp. 145-155. doi: 10.1038/nn.4476. https://www.nature.com/articles/nn.4476.

(3) Tryptophan-rich foods:

51. Taleb, Soraya. "Tryptophan Dietary Impacts Gut Barrier and Metabolic Diseases." Frontiers in Immunology, vol. 10, no. 2113, 2019. doi: 10.3389/fimmu.2019.02113. https://www.frontiersin.org/articles/10.3389/fimmu.2019.02113/full.

52. Tan, Vanessa X. and Guillemin, Gilles J. “Kynurenine Pathway Metabolites as Biomarkers for Amyotrophic Lateral Sclerosis.” Frontiers in Neuroscience, vol. 13, no. 1013, 2019. doi: 10.3389/fnins.2019.01013. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764462/.

(4) B vitamin-rich foods:

53. Yoshii, Ken, et al. "Metabolism of Dietary and Microbial Vitamin B Family in the Regulation of Host Immunity." Frontiers in Nutrition, vol. 6, no. 48, 2019. https://doi.org/10.3389/fnut.2019.00048.

(5) Vitamin C-rich foods:

54. Juraschek, Stephen P., et al. "Effect of Oral Vitamin C Supplementation on Serum Uric Acid: A Meta-Analysis of Randomized Controlled Trials." Arthritis Care & Research, vol. 63, no. 9, 2011, pp. 1295-1306. doi: 10.1002/acr.20519. https://onlinelibrary.wiley.com/doi/full/10.1002/acr.20519.

55. Hill, C., et al. "The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic." Gastroenterology & Hepatology, vol. 11, no. 8, 2014. doi: 10.1038/nrgastro.2014.66. https://www.ncbi.nlm.nih.gov/pubmed/24912386.

(6) Protein-dense foods:

56. Orr, Jeb and Davy, Brenda. "Dietary Influences on Peripheral Hormones Regulating Energy Intake: Potential Applications for Weight Management." Journal of the American Dietetic Association, vol. 105, no. 7, 2005, pp. 1115-1124. https://doi.org/10.1016/j.jada.2005.04.005.

57. Thalacker-Mercer, Anna E., et al. "Inadequate Protein Intake Affects Skeletal Muscle Transcript Profiles in Older Humans." The American Journal of Clinical Nutrition, vol. 85, no. 5, 2007, pp. 1344-1352. https://doi.org/10.1093/ajcn/85.5.1344.

58. Morris, Gerwyn, et al. "The Neuro-Immune Pathophysiology of Central and Peripheral Fatigue in Systemic Immune-Inflammatory and Neuro-Immune Diseases." Molecular Neurobiology, vol. 53, 2016, pp. 1195-1219. doi: 10.1007/s12035-015-9090-9. https://link.springer.com/article/10.1007/s12035-015-9090-9.

59. Mawe, G.M. and Hoffman, J.M. "Serotonin Signaling in the Gastrointestinal Tract: Functions, dysfunctions, and therapeutic targets." Nature Reviews Gastroenterology & Hepatology, vol. 10, no. 8, 2013, pp. 473-486. doi: 10.1038/nrgastro.2013.105. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4048923/pdf/nihms565366.pdf.

(7) Omega-3 fatty acids:

60. Pakala, Rajashree, et al. "Serotonin-Induced Endothelial Cell Proliferation is Blocked by Omega-3 Fatty Acids." Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA), vol. 60, no. 2, 1999, pp. 115-123. https://doi.org/10.1054/plef.1998.0017.

(8) Antioxidants and polyphenols:

61. Pandey, K.B. and Rizvi, S.I. "Plant Polyphenols as Dietary Antioxidants in Human Health and Disease." Oxidative Medicine and Cellular Longevity, vol. 2, no.5, 2009, pp. 270-278. https://doi.org/10.4161/oxim.2.5.9498.

62. Duthie, Garry, et al. "Plant Polyphenols in Cancer and Heart Disease: Implications as Nutritional Antioxidants." Nutrition Research Reviews, vol. 13, no. 1, 2000, pp. 79-106. Doi: 10.1079/095442200108729016. https://www.cambridge.org/core/journals/nutrition-research-reviews/article/plant-polyphenols-in-cancer-and-heart-disease-implications-as-nutritional-antioxidants/07AA8E096BDDCC619DABABCDCFE76628.


(9) Include purine-rich food:

63. Bowman, Gene L., et al. "Uric Acid as a CNS Antioxidant." Journal of Alzheimer's Disease, vol. 9, no.4, 2010, pp. 1331-1336. doi: 10.3233/JAD-2010-1330. https://content.iospress.com/articles/journal-of-alzheimers-disease/jad01330.

64. Sautin, Yuri Y. and Johnson, Richard J. “Uric Acid: The Oxidant-Antioxidant Paradox.” Nucleosides, Nucleotides & Nucleic Acids, U.S. National Library of Medicine, June 2008, www.ncbi.nlm.nih.gov/pmc/articles/PMC2895915/.

65. Bannon, Michael. “Is Uric Acid Good for You?” QJM: An International Journal of Medicine, vol. 104, Issue 12, page 1013. Dec. 2011, https://doi.org/10.1093/qjmed/hcr228.

(10) Exclude purine-rich food:

66. Ghaemi-Oskoui, F. and Shi, Y. "The Role of Uric Acid as an Endogenous Danger Signal in Immunity and Inflammation." Current Rheumatology Reports, vol. 13, no. 2, 2011, pp. 160-166. doi: 10.1007/s11926-011-0162-1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3093438/pdf/nihms279732.pdf.

67. Guo, Zhuang, et al. "Intestinal Microbiota Distinguish Gout Patients from Healthy Humans ." Scientific Reports, vol. 6, no. 20602, 2016. https://doi.org/10.1038/srep20602. https://www.nature.com/articles/srep20602.

(11) Reduce or eliminate caffeine:

68. DePaula, J. and Farah, A. "Caffeine Consumption through Coffee: Content in the Beverage, Metabolism, Health Benefits and Risks." Beverages, vol. 5, no. 37, 2019. https://doi.org/10.3390/beverages5020037.

69. Daly, J.W. "Caffeine analogs: Biomedical Impact." Cellular and Molecular Life Sciences, vol. 64, no. 16, 2007, pp. 2153-2169. doi 10.1007/s00018-007-7051-9. https://www.ncbi.nlm.nih.gov/pubmed/17514358.

(12) Increase water:

70. Ritz, P. and Berrut, G. "The Importance of Good Hydration for Day-to-Day Health." Nutrition Reviews, vol. 63, no. 1, 2005, pp. 6-13. https://doi.org/10.1111/j.1753-4887.2005.tb00155.x.


71. Yu, Yiran, et al. “Alterations of the Gut Microbiome Associated with the Treatment of Hyperuricaemia in Male Rats.” Frontiers in Microbiology, Frontiers Media S.A., 19 Sept. 2018, www.ncbi.nlm.nih.gov/pmc/articles/PMC6156441/#!po=72.5000.

72. Useros, Noemi Redondo, et al. “HYDRAGUT Study: Influence of HYDRAtion Status on the GUT Microbiota and Their Impact on the Immune System.” The FASEB Journal, 1 Apr. 2015, www.fasebj.org/doi/abs/10.1096/fasebj.29.1_supplement.593.1.

73. Hellsten-Westing, Y., et al. "Exchange of Purines in Human Liver and Skeletal Muscle with Short-Term Exhaustive Exercise." Regulatory, Integrative and Comparative Physiology, vol.266, no. 1, 1994, pp. 81-86. https://doi.org/10.1152/ajpregu.1994.266.1.R81.

(13) Exclude gut-damaging food:

74. Zhang, Na, et al. "Time for food: The Impact of Diet on Gut Microbiota and Human Health." Nutrition, vol. 51-52, 2018, pp. 80-85. https://doi.org/10.1016/j.nut.2017.12.005.

75. Myles, I. A. "Fast Food Fever: Reviewing the Impacts of the Western Diet on Immunity." Nutrition Journal, vol. 13, no. 61, 2014. https://doi.org/10.1186/1475-2891-13-61.


(14) Carbohydrate consumption for energy:

76. Flint, Harry J., et al. "Microbial Degradation of Complex Carbohydrates in the Gut." Gut Microbes, vol. 3, no. 4, 2012, pp. 289-306. https://doi.org/10.4161/gmic.19897.

Supplement recommendations 

Ixcela Biome Support (Probiotic and Prebiotic)

77. Jamilian, Mehri, et al. “Effects of Probiotic Supplementation on Metabolic Status in Pregnant Women: a Randomized, Double-Blind, Placebo-Controlled Trial.” Archives of Iranian Medicine, vol. 19, no. 10, 2016, pp. 687-692. doi: 0161910/AIM.004. www.ncbi.nlm.nih.gov/pubmed/27743432.

78. Steenbergen, Laura, et al. “A Randomized Controlled Trial to Test the Effect of Multispecies Probiotics on Cognitive Reactivity to Sad Mood.” Brain, Behavior, and Immunity, vol. 48, 2015, pp. 258-264. https://doi.org/10.1016/j.bbi.2015.04.003.

79. Cruchet, Sylvia, et al. “The Use of Probiotics in Pediatric Gastroenterology: a Review of the Literature and Recommendations by Latin-American Experts.” Paediatric Drugs, vol. 17, no. 3, 2015, pp. 199-216. https://doi.org/10.1007/s40272-015-0124-6.

80. d’Ettorre, Gabriella, et al. “Probiotics Reduce Inflammation in Antiretroviral Treated, HIV-Infected Individuals: Results of the ‘Probio-HIV’ Clinical Trial.” PLoS ONE, vol. 10, no. 9, 2015. https://doi.org/10.1371/journal.pone.0137200.

81. Hwang, E-Nam, et al. “Screening of Immune-Active Lactic Acid Bacteria.” Korean Society for Food Science of Animal Resources, vol. 35, no. 4, 2015, pp. 541-550. http://dx.doi.org/10.5851/kosfa.2015.35.4.541.

82. Maldonado, J., et al. “Evaluation of the Safety, Tolerance and Efficacy of 1-Year Consumption of Infant Formula Supplemented with Lactobacillus Fermentum CECT5716 Lc40 or Bifidobacterium Breve CECT7263: A Randomized Controlled Trial.” BMC Pediatrics, vol. 19, no. 1, 2019. doi: 10.1186/s12887-019-1753-7. www.ncbi.nlm.nih.gov/pmc/articles/PMC6802336.

83. Cruchet, S., et al. “The Use of Probiotics in Pediatric Gastroenterology: a Review of the Literature and Recommendations by Latin-American Experts.” Paediatric Drugs, vol. 17, no. 3, 2015, pp. 199-216. doi: 10.1007/s40272-015-0124-6. www.ncbi.nlm.nih.gov/pubmed/25799959.

84. Mohammadi, Ali Akbar, et al. “Effects of Probiotics on Biomarkers of Oxidative Stress and Inflammatory Factors in Petrochemical Workers: A Randomized, Double-Blind, Placebo-Controlled Trial.” International Journal of Preventive Medicine, vol. 6, no. 1, 2015, pp. 82-109. doi: 10.4103/2008-7802.164146. www.ncbi.nlm.nih.gov/pubmed/26445629.

85. Dang, Y. et al. “The Effect of Probiotics Supplementation on Helicobacter Pylori Eradication Rates and Side Effects during Eradication Therapy: A Meta-Analysis.” PloS One, vol. 9, no. 11, 2014. doi: 10.1371/journal.pone.0111030. www.ncbi.nlm.nih.gov/pubmed/25365320.

86. Zambori, Csilla, et al. “Antimicrobial Effect of Probiotics on Bacterial Species from Dental Plaque.” The Journal of Infection in Developing Countries, vol. 10, no. 3, 2016, pp. 214-221. https://doi.org/10.3855/jidc.6800.

87. Waki, N., et al. “Effects of Probiotic Lactobacillus Brevis KB290 on Incidence of Influenza Infection among Schoolchildren: An Open-Label Pilot Study.” Letters in Applied Microbiology, vol. 59, 2014, pp. 565-571. doi: 10.1111/lam.12340. www.ncbi.nlm.nih.gov/pmc/articles/PMC4285317/.

88. Ashraf, Rabia and Shah, Nagendra P. “Immune System Stimulation by Probiotic Microorganisms.” Critical Reviews in Food Science and Nutrition, vol. 54, no. 7, 2014, pp. 938-956. doi: 10.1080/10408398.2011.619671. www.ncbi.nlm.nih.gov/pubmed/24499072.

89. Jäger, Ralf, et al. “Probiotic Streptococcus Thermophilus FP4 and Bifidobacterium Breve BR03 Supplementation Attenuates Performance and Range-of-Motion Decrements Following Muscle Damaging Exercise.” Nutrients, vol. 8, no. 10, 2016, pp. 642-653. doi: 10.3390/nu8100642. www.ncbi.nlm.nih.gov/pmc/articles/PMC5084029/.

Ixcela Balance (5-HTP and Vitamin B6)

5-HTP

90. Ceci, F., et al. “The Effects of Oral 5-Hydroxytryptophan Administration on Feeding Behavior in Obese Adult Female Subjects.” Journal of Neural Transmission, vol. 76, no. 2, 1989, pp. 109-117. doi: 10.1007/bf01578751. www.ncbi.nlm.nih.gov/pubmed/2468734.

91. Cangiano, C., et al. “Effects of Oral 5-Hydroxy-Tryptophan on Energy Intake and Macronutrient Selection in Non-Insulin Dependent Diabetic Patients.” International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity, vol. 22, no. 7, 1998, pp. 648-654. doi: 10.1038/sj.ijo.0800642. www.ncbi.nlm.nih.gov/pubmed/9705024.

92. Birdsall, T. C. “5-Hydroxytryptophan: a Clinically-Effective Serotonin Precursor.” Alternative Medicine Review: A Journal of Clinical Therapeutic, vol. 3, no. 4, 1998, pp. 271-280. www.ncbi.nlm.nih.gov/pubmed/9727088/.

B6 - See Ixcela Power


Ixcela Defend (Vitamin C and Zinc)

Vitamin C

93. Nishikimi, Morimitsu. “Oxidation of Ascorbic Acid with Superoxide Anion Generated by the Xanthine-Xanthine Oxidase System.” Biochemical and Biophysical Research Communications, vol. 63, no. 2, 1975, pp. 463-468. https://doi.org/10.1016/0006-291X(75)90710-X.

94. La Du, Bert N., and Zannoni, Vincent G. “The Role of Ascorbic Acid in Tyrosine Metabolism” The New York Academy of Sciences, vol. 92, no. 1, 1961, pp. 175-191. https://doi.org/10.1111/j.1749-6632.1961.tb46117.x.

95. Huang, Han-Yao, et al. “The Effects of Vitamin C Supplementation on Serum Concentrations of Uric Acid: Results of a Randomized Controlled Trial.” Arthritis & Rheumatism, vol. 52, no. 6, 2005, pp.1843-1847. https://doi.org/10.1002/art.21105.

96. Gao, Xiang, et al. “Vitamin C Intake and Serum Uric Acid Concentration in Men.” The Journal of Rheumatology, vol. 35, no. 9, 2008, pp. 1853-1858. www.jrheum.org/content/35/9/1853.short.


97. Choi, Hyon, et al. “Vitamin C Intake and the Risk of Gout in Men.” Archives of Internal Medicine, vol. 169, no. 5, 2009, pp. 502-517. doi: 10.1001/archinternmed.2008.606. https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/414828.

98. “KEGG Purine Metabolism - Reference Pathway” KEGG PATHWAY. www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=map00230&keyword=Xanthine.

Zinc

99. Walravens, P. A. “Zinc Metabolism and Its Implications in Clinical Medicine.” The Western Journal of Medicine, vol. 130, no. 2, 1979, pp. 133-142. www.ncbi.nlm.nih.gov/pmc/articles/PMC1238526/.

100. Powell, Saul R. “Antioxidant Properties of Zinc.” The Journal of Nutrition, vol. 130, no. 5, 2000, pp. 1447-1454. https://doi.org/10.1093/jn/130.5.1447S.

101. Girotti Albert W., et al. “Inhibitory Effect of Zinc(II) on Free Radical Lipid Peroxidation in Erythrocyte Membranes.” Journal of Free Radicals in Biology & Medicine, vol. 1, no. 5-6, 1985, pp. 395-401. https://doi.org/10.1016/0748-5514(85)90152-7.

102. Cox, Dennis H. and Harris, Dorothy L. “Reduction of Liver Xanthine Oxidase Activity and Iron Storage Proteins in Rats Fed Excess Zinc.” The Journal of Nutrition, vol. 78, no. 4, 1962, pp. 415-418. https://doi.org/10.1093/jn/78.4.415.

103. Morita, Yukari, et al. “Identification of Xanthine Dehydrogenase/Xanthine Oxidase as a Rat Paneth Cell Zinc-Binding Protein.” Biochimica Et Biophysica Acta (BBA) - Molecular Cell Research, vol. 1540, no. 1, 2001, pp. 43-49. https://doi.org/10.1016/S0167-4889(01)00118-5.

104. Fliss, Henry and Ménard, Michel. “Oxidant-Induced Mobilization of Zinc from Metallothionein.” Archives of Biochemistry and Biophysics, vol. 293, no. 1, 1992, pp. 195-199. https://doi.org/10.1016/0003-9861(92)90384-9.

105. Fischer, P.W., et al. “Effect of Zinc Supplementation on Copper Status in Adult Man.” The American Journal of Clinical Nutrition, vol. 40, no. 4, 1984, pp. 743-746. https://doi.org/10.1093/ajcn/40.4.743.

Ixcela Night (Melatonin)

106. Huether, Gerald, et al. “Effect of Tryptophan Administration on Circulating Melatonin Levels in Chicks and Rats: Evidence for Stimulation of Melatonin Synthesis and Release in the Gastrointestinal Tract.” Life Sciences, vol. 51, no. 12, 1992, pp. 945-953. https://doi.org/10.1016/0024-3205(92)90402-B.

107. Paredes, Sergio D., et al. “Melatonin and Tryptophan Affect the Activity-Rest Rhythm, Core and Peripheral Temperatures, and Interleukin Levels in the Ringdove: Changes with Age.” The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, vol. 64A, no. 3, 2009, pp. 340-350. doi: 10.1093/gerona/gln054. www.ncbi.nlm.nih.gov/pmc/articles/PMC2654999/.

108. Noda, Y., et al. “Melatonin and Its Precursors Scavenge Nitric Oxide.” Journal of Pineal Research, vol. 27, no. 3, 1999, pp. 159-163. https://doi.org/10.1111/j.1600-079X.1999.tb00611.x

109. Xie, Z., et al. “A Review of Sleep Disorders and Melatonin.” Neurological Research, vol. 39, no. 6, 2017, pp. 559-565. doi: 10.1080/01616412.2017.1315864. www.ncbi.nlm.nih.gov/pubmed/28460563.

Ixcela Power (Vitamin B Complex)

B1

110. Dalgleish, C.E. “Thiamine and Tryptophan Metabolism.” Biochimica et Biophysica Aca, vol. 15, no. 2, 1954, pp. 295-296. https://doi.org/10.1016/0006-3002(54)90074-8.

111. (No authors listed). “Influence of Thiamine and Biotin on Tryptophan Metabolism.” Nutrition Reviews, vol. 14, no. 4, 1956, pp. 119-120. https://doi.org/10.1111/j.1753-4887.1956.tb01521.x.

112. Henderson, L.M., et al. “Effect of Deficiency of B Vitamins on the Metabolism of Tryptophan by the Rat.” Journal of Biological Chemistry, vol. 189, no. 1, 1951, pp. 19-29. http://www.jbc.org/content/189/1/19.full.pdf.

B2

113. Theofylaktopoulou, Despoina, et al. “Vitamins B2 and B6 as Determinants of Kynurenines and Related Markers of Interferon-γ-mediated Immune Activation in the Community-Based Hordaland Health Study.” British Journal of Nutrition, vol. 112, no. 7, 2014, pp. 1065-1072. https://doi.org/10.1017/S0007114514001858.

114. Marashly, E. and Bohlega, S. “Riboflavin Has Neuroprotective Potential: Focus on Parkinson’s Disease and Migraine.” Frontiers in Neurology, vol. 8, no. 333, 2017. https://doi.org/10.3389/fneur.2017.00333.

115. Tsamaloukas, A. G. “Vitamins and Thrombosis (VITRO) Study—Homocysteine Lowering with B Vitamins.” Blood, vol. 109, no. 12, 2007, pp. 5520-5521. doi: https://doi.org/10.1182/blood-2007-01-066787.

116. Midttun, et al. “Quantitative Profiling of Biomarkers Related to B-Vitamin Status, Tryptophan Metabolism and Inflammation in Human Plasma by Liquid Chromatography/Tandem Mass Spectrometry.” Rapid Communications in Mass Spectrometry, vol. 23, no. 9, 2009, pp. 1371-1379. https://doi.org/10.1002/rcm.4013.

117. Midttun, Øivind, et al. “Most Blood Biomarkers Related to Vitamin Status, One-Carbon Metabolism, and the Kynurenine Pathway Show Adequate Preanalytical Stability and Within-Person Reproducibility to Allow Assessment of Exposure or Nutritional Status in Healthy Women and Cardiovascular Patients.” The Journal of Nutrition, vol. 144, no. 5, 2014, pp. 784-790. https://doi.org/10.3945/jn.113.189738.

118. Aarsland, Tore, et al. “Serum Concentrations of Kynurenines in Adult Patients with Attention-Deficit Hyperactivity Disorder (ADHD): A Case–Control Study.” Behavioral and Brain Functions, vol. 11, no. 36, 2015. https://doi.org/10.1186/s12993-015-0080-x.

119. Myint, Aye. “Kynurenines: From the Perspective of Major Psychiatric Disorders .” FEBS Journal, vol. 279, no. 8, 2012, pp. 1375-1385. https://doi.org/10.1111/j.1742-4658.2012.08551.x.

120. Clayton, P.T., et al. “Pellagra with Colitis Due to a Defect in Tryptophan Metabolism.” European Journal of Pediatrics, vol. 150, 1991, pp. 498-502. https://doi.org/10.1007/BF01958432.

121. Dalgliesh, C.E. “Interrelationships of Tryptophan, Nicotinic Acid and Other B Vitamins.” British Medical Bulletin, vol. 12, no. 1, 1956, pp. 49-51. https://doi.org/10.1093/oxfordjournals.bmb.a069514.

B6

122. Wolf, Hans. “Studies on Tryptophan Metabolism in Man: The Effect of Hormones and Vitamin B6 on Urinary Excretion of Metabolites of the Kynurenine Pathway: Part 1.” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 33, 1974, pp. 11-87. https://doi.org/10.3109/00365517409104201.

123. Wolf, Hans. “Studies on Tryptophan Metabolism in Man: The Effect of Hormones and Vitamin B6 on Urinary Excretion of Metabolites of the Kynurenine Pathway: Part 2.” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 33, 1974, pp. 89-182. https://doi.org/10.3109/00365517409104202.

124. Yess, Norma, et al. “Vitamin B6 Depletion in Man: Urinary Excretion of Tryptophan Metabolites.” The Journal of Nutrition, vol. 84, no. 3, 1964, pp. 229-236. https://doi.org/10.1093/jn/84.3.229.

125. Kowlessar, O. Dhodanand et al. “Abnormal Tryptophan Metabolism in Patients with Adult Celiac Disease, with Evidence for Deficiency of Vitamin B6.” Journal of Clinical Investigation, vol. 43, no. 5, 1964, pp. 894-903. doi: 10.1172/JCI104975. https://dm5migu4zj3pb.cloudfront.net/manuscripts/104000/104975/JCI64104975.pdf.

126. Midttun, Øivind, et al. “Low Plasma Vitamin B-6 Status Affects Metabolism through the Kynurenine Pathway in Cardiovascular Patients with Systemic Inflammation.” The Journal of Nutrition, vol. 141, no. 4, 2011, pp. 611-617. https://doi.org/10.3945/jn.110.133082.

127. Rios-Avila, Luisa, et al. “A Mathematical Model of Tryptophan Metabolism via the Kynurenine Pathway Provides Insights into the Effects of Vitamin B-6 Deficiency, Tryptophan Loading, and Induction of Tryptophan 2,3-Dioxygenase on Tryptophan Metabolites.” The Journal of Nutrition, vol. 143, no. 9, 2013, pp. 1509-1519. https://doi.org/10.3945/jn.113.174599.

128. Rios-Avila, Luisa, et al. “Metabolite Profile Analysis Reveals Association of Vitamin B-6 with Metabolites Related to One-Carbon Metabolism and Tryptophan Catabolism but Not with Biomarkers of Inflammation in Oral Contraceptive Users and Reveals the Effects of Oral Contraceptives on These Processes.” The Journal of Nutrition, vol. 145, no. 1, 2015, pp. 87-95. https://doi.org/10.3945/jn.114.201095.

129. Hankes, L. V. et al. “Tryptophan Metabolism in Humans with Various Types of Anemias.” Blood, vol. 32, no. 4, 1968, pp. 649-661. https://doi.org/10.1182/blood.V32.4.649.649.

130. Deac, Oana, et al. “Serum Immune System Biomarkers Neopterin and Interleukin-10 Are Strongly Related to Tryptophan Metabolism in Healthy Young Adults.” The Journal of Nutrition, vol. 146, no. 9, 2016, pp. 1801-1806. https://doi.org/10.3945/jn.116.230698.

131. Hansen, C.M., et al. “Vitamin B-6 Status of Women with a Constant Intake of Vitamin B-6 Changes with Three Levels of Dietary Protein.” The Journal of Nutrition, vol. 126, no. 7, 1996, pp. 1891-1901. https://academic.oup.com/jn/article/126/7/1891/4723639.

132. Majewski, M., et al . “Overview of the Role of Vitamins and Minerals on the Kynurenine Pathway in Health and Disease.” Journal of Physiology and Pharmacology, vol. 67, no. 1, 2016, pp. 3-19. https://www.ncbi.nlm.nih.gov/pubmed/27010891.

133. Ciorba, Matthew. “Kynurenine Pathway Metabolites: Relevant to Vitamin B-6 Deficiency and Beyond.” American Journal of Clinical Nutrition, vol. 98, no. 4, 2013, pp. 863-864. doi: 10.3945/ajcn.113.072025. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498264/pdf/ajcn984863.pdf.

134. Christensen, MHE, et al. “Inflammatory Markers, the Tryptophan-Kynurenine Pathway, and Vitamin B Status after Bariatric Surgery.” PLoS One, vol. 13, no. 2, 2018. doi: 10.1371/journal.pone.0192169. https://www.ncbi.nlm.nih.gov/pubmed/29401505.

135. Deac, Oana, et al. “Tryptophan Catabolism and Vitamin B-6 Status Are Affected by Gender and Lifestyle Factors in Healthy Young Adults.” The Journal of Nutrition, vol. 145, no. 4, 2015, pp. 701-707. https://doi.org/10.3945/jn.114.203091.

136. Eastman, Clifford and Guilarte, Tomas. “Vitamin B-6, Kynurenines, and Central Nervous System Function: Developmental Aspects.” The Journal of Nutritional Biochemistry, vol. 3, no. 12, 1992, pp. 618-632. https://doi.org/10.1016/0955-2863(92)90081-S.

137. Danielski, L.G., et al. “Vitamin B6 Reduces Neurochemical and Long-Term Cognitive Alterations After Polymicrobial Sepsis: Involvement of the Kynurenine Pathway Modulation.” Molecular Neurobiology, vol. 55, no. 6, 2018, pp. 5255-5268. doi: 10.1007/s12035-017-0706-0. https://www.ncbi.nlm.nih.gov/pubmed/28879460.

138. Schaeffer, Monica C., et al. “Dietary Excess of Vitamin B-6 Affects the Concentrations of Amino Acids in the Caudate Nucleus and Serum and the Binding Properties of Serotonin Receptors in the Brain Cortex of Rats.” The Journal of Nutrition, vol. 128, no. 10, 1998, pp. 1829-1835. https://doi.org/10.1093/jn/128.10.1829.

139. Guilarte, Tomas. “Vitamin B6 and Cognitive Development: Recent Research Findings from Human and Animal Studies.” Nutrition Reviews, vol. 51, no. 7, 1993, pp. 193-198. https://doi.org/10.1111/j.1753-4887.1993.tb03102.x.

B9

140. Gomes, G.W., et al. “Effects of a Folic Acid 5 Mg Daily Intervention on Markers of Vitamin B Status and Kynurenine Pathway.” Blood, vol. 130, 2017, pp. 4793. https://ashpublications.org/blood/article/130/Supplement%201/4739/72100/Effects-of-a-Folic-Acid-5-Mg-Daily-Intervention-on.

Ixcela Protect (NAC (N-Acetyl-L-Cysteine), L-Methionine and Selenium)

N-Acetyl-L-Cysteine

141. Gibson, Gary E. and Blass, John P. “Nutrition and Functional Neurochemistry.” Basic Neurochemistry: Molecular, Cellular and Medical Aspects. 6th Edition., U.S. National Library of Medicine, 1 Jan. 1999, www.ncbi.nlm.nih.gov/books/NBK28242/.

142. Machlin, Lawrence J. and Bendich, Adrianne. “Free Radical Tissue Damage: Protective Role of Antioxidant Nutrients.” Federation of American Societies for Experimental Biology, John Wiley & Sons, Ltd, 1 Dec. 1987, faseb.onlinelibrary.wiley.com/doi/abs/10.1096/fasebj.1.6.3315807.

143. Sanmartin, C., et al. “Selenium and Clinical Trials: New Therapeutic Evidence for Multiple Diseases.” Current Medicinal Chemistry, U.S. National Library of Medicine, 2011, www.ncbi.nlm.nih.gov/pubmed/21864284.

144. Rossi, Franca, et al. “Crystal Structure of Human Kynurenine Aminotransferase I.” Journal of Biological Chemistry, 26 Nov. 2004, www.jbc.org/content/279/48/50214.

L-Methionine

145. Pinto, John T., et al. “Kynurenine Aminotransferase III and Glutamine Transaminase L Are Identical Enzymes That Have Cysteine S-Conjugate β-Lyase Activity and Can Transaminate L-Selenomethionine.” The Journal of Biological Chemistry, American Society for Biochemistry and Molecular Biology, 7 Nov. 2014, www.ncbi.nlm.nih.gov/pmc/articles/PMC4223302/.

Selenium

146. Cooper, Arthur J.L., et al. “Cysteine S-Conjugate β-Lyases: Important Roles in the Metabolism of Naturally Occurring Sulfur and Selenium-Containing Compounds, Xenobiotics and Anticancer Agents.” Amino Acids, U.S. National Library of Medicine, June 2011, www.ncbi.nlm.nih.gov/pmc/articles/PMC2898922/.

Ixcela Rest

L-Tryptophan

147. Wurtman,R.J., et al. “Precursor Control of Neurotransmitter Synthesis.” Pharmacological Reviews, vol. 32, no.4, 1980, pp. 315-335. www.ncbi.nlm.nih.gov/pubmed/6115400/.

148. Smith, S.A. and Pogson, C.I. “The Metabolism of L-Tryptophan by Isolated Rat Liver Cells. Effect of Albumin Binding and Amino Acid Competition on Oxidation of Tryptophan by Tryptophan 2,3-Dioxygenase.” The Biochemical Journal, vol. 186, no. 3, 1980, pp. 977-986. doi: 10.1042/bj1860977. www.ncbi.nlm.nih.gov/pmc/articles/PMC1161737/.

149. Zagajewski, J., et al. “Conversion L-Tryptophan to Melatonin in the Gastrointestinal Tract: The New High Performance Liquid Chromatography Method Enabling Simultaneous Determination of Six metabolites of L-Tryptophan by Native Fluorescence and UV-VIS Detection.” Journal of Physiology and Pharmacology, vol. 63, no. 6, 2012, pp. 613-621. https://www.ncbi.nlm.nih.gov/pubmed/23388477.

150.Brzozowski, Tomasz, et al. “TheRole of Melatonin and L‐Tryptophan in Prevention of Acute Gastric Lesions Induced by Stress, Ethanol, Ischemia, and Aspirin.” Journal of Pineal Research, vol. 23, no. 2, 1997, pp. 79-89. https://doi.org/10.1111/j.1600-079X.1997.tb00339.x.


Ixcela Build (Branch Chain Amino Acids)

Leucine, Isoleucine and Valine


151. Badawy, Abdulla, et al. “Mechanisms of the Pellagragenic Effect of Leucine: Stimulation of Hepatic Tryptophan Oxidation by Administration of Branched-Chain Amino Acids to Healthy Human Volunteers and the Role of Plasma Free Tryptophan and Total Kynurenines.” International Journal of Tryptophan Research, vol. 7, 2014, pp. 23-32. doi: 10.4137/IJTR.S18231. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259507/.

152. Belavady, Bhavani, et al. “The Effect of the Oral Administration of Leucine on the Metabolism of Tryptophan.” The Biochemical Journal, vol. 87, 1963, pp. 652-655. doi: 10.1042/bj0870652. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1202014/pdf/biochemj00790-0212.pdf.

153. Patterson, J.I., et al. “Excretion of Tryptophan-Niacin Metabolites by Young Men: Effects of Tryptophan, Leucine, and Vitamin B6 Intakes.” The American Journal of Clinical Nutrition, vol. 33, no. 10, 1980, pp. 2157-2167. https://doi.org/10.1093/ajcn/33.10.2157.

154. Bender, David A. “Effects of a Dietary Excess of Leucine and of the Addition of Leucine and 2-Oxo-Isocaproate on the Metabolism of Tryptophan and Niacin in Isolated Rat Liver Cells.” British Journal of Nutrition, vol. 61, no. 3, 1989, pp. 629-640. https://doi.org/10.1079/BJN19890150.

155. Blomstrand, E., et al. “Administration of Branched-Chain Amino Acids During Sustained Exercise — Effects on Performance and on Plasma Concentration of Some Amino Acids.” European Journal of Applied Physiology and Occupational Physiology, vol. 63, 1991, pp. 83-88. https://doi.org/10.1007/BF00235174.

156. Blomstrand, E. and Newsholme. E.A. “Effect of Branched‐Chain Amino Acid Supplementation on the Exercise‐Induced Change in Aromatic Amino Acid Concentration in Human Muscle.” Acta Physiologica Scandinavica, vol. 146, no. 3, 1992, pp. 293-298. https://doi.org/10.1111/j.1748-1716.1992.tb09422.x.

157. Blomstrand, Eva and Saltin, Bengt . “BCAA Intake Affects Protein Metabolism in Muscle after but not during Exercise in Humans.” American Journal of Physiology Endocrinology and Metabolism, vol. 281, 2001, pp. 365-374. https://doi.org/10.1152/ajpendo.2001.281.2.E365.

158. Blomstrand, Eva. “A Role for Branched-Chain Amino Acids in Reducing Central Fatigue.” The Journal of Nutrition, vol. 136, no. 2, 2006, pp. 544-547. https://doi.org/10.1093/jn/136.2.544S.


159. Fernstrom, John D. “Branched-Chain Amino Acids and Brain Function.” The Journal of Nutrition, vol. 135, no. 6, 2005, pp. 1539-1546. https://doi.org/10.1093/jn/135.6.1539S.


160. Wahren, John, et al. “Is Intravenous Administration of Branched Chain Amino Acids Effective in the Treatment of Hepatic Encephalopathy? A Multicenter Study.” Hepatology, vol. 3, no. 4, 1983, pp. 475-480. https://doi.org/10.1002/hep.1840030402.


161. Nair, K.S., et al. “Leucine as a Regulator of Whole Body and Skeletal Muscle Protein Metabolism in Humans.” The American Journal of Physiology, vol. 263, no. 5, 1992, pp. 928-934. doi: 10.1152/ajpendo.1992.263.5.E928. https://www.ncbi.nlm.nih.gov/pubmed/1443126.


162. Louard, R.J., et al. “Effect of Infused Branched-Chain Amino Acids on Muscle and Whole-Body Amino Acid Metabolism in Man.” Clinical Science, vol. 79, no. 5, 1990, pp. 457-466. doi: 10.1042/cs0790457. https://www.ncbi.nlm.nih.gov/pubmed/2174312.


163. Alvestrand, A., et al. “Influence of Leucine Infusion on Intracellular Amino Acids in Humans.” European Journal of Clinical Investigation, vol. 20, no. 3, 1990, pp. 293-298. doi: 10.1111/j.1365-2362.1990.tb01858. https://www.ncbi.nlm.nih.gov/pubmed/2114990.


Mindfulness recommendations  

Practice mindful eating

164. Dalen, J., et al. “Pilot study: Mindful Eating and Living (MEAL): Weight, Eating Behavior, and Psychological Outcomes Associated with a Mindfulness-Based Intervention for People with Obesity.” Complementary Therapies in Medicine, vol. 18, no. 6, 2010, pp. 260-264. doi: 10.1016/j.ctim.2010.09.008. https://www.ncbi.nlm.nih.gov/pubmed/21130363.

165. Mantzios, Michail and Wilson, Janet Clare. “Mindfulness, Eating Behaviours, and Obesity: A Review and Reflection on Current Findings.” Current Obesity Reports, vol. 4, no. 1, 2015, pp. 141-146. https://doi.org/10.1007/s13679-014-0131-x.

Try Mindfulness-based stress reduction

166. Aucoin, Monique, et al. “Mindfulness-Based Therapies in the Treatment of Functional Gastrointestinal Disorders: A Meta-Analysis.” Evidence-Based Complementary and Alternative Medicine, 2014. https://doi.org/10.1155/2014/140724.

167. Zernicke, K.A., et al. “Mindfulness-Based Stress Reduction for the Treatment of Irritable Bowel Syndrome Symptoms: A Randomized Wait-List Controlled Trial.” The International Journal of Behavioral Medicine, vol. 20, no. 3, 2013, pp. 385-396. doi: 10.1007/s12529-012-9241-6. https://www.ncbi.nlm.nih.gov/pubmed/22618308.

Take time for Journaling and logging

168. Schnorr, S.L. and Bachner, H.A. “Integrative Therapies in Anxiety Treatment with Special Emphasis on the Gut Microbiome.” Yale Journal of Biology and Medicine, vol. 89, no. 3, 2016 pp. 397-422. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5045149/.

Prepare for Quality Sleep

169. Smith, Robert, et al. “Gut Microbiome Diversity is Associated with Sleep Physiology in Humans.” PLoS One, vol. 14, no. 10, 2019. https://doi.org/10.1371/journal.pone.0222394.

170. Barros, M., et al. “Quality of Sleep, Health and Well-Being in a Population-Based Study.” Revista de Saude Publica, vol. 53, no. 82, 2019. doi: 10.11606/s1518-8787.2019053001067. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6763282/.

Fitness Recommendations

171. Witvrouw, Erik, et al . “Stretching and Injury Prevention.” Sports Medicine, vol. 34, no. 7, 2004, pp. 443-449. https://doi.org/10.2165/00007256-200434070-00003.

172. Ghoncheh, Shahyad and Smith, Jonathan. “Progressive Muscle Relaxation, Yoga Stretching, and ABC Relaxation Theory.” Journal of Clinical Psychology, vol. 60, no. 1, 2004, pp. 131-136. https://doi.org/10.1002/jclp.10194.

173. D’Silva, A., et al. “Yoga as a Therapy for Irritable Bowel Syndrome.” Digestive Diseases and Sciences, 2019. doi: 10.1007/s10620-019-05989-6. https://www.ncbi.nlm.nih.gov/pubmed/31832970.

174. Anheyer, D., et al. “Yoga for Treating Headaches: a Systematic Review and Meta-analysis.” Journal of General Internal Medicine, 2019. https://doi.org/10.1007/s11606-019-05413-9.

175. Dunn, K.D. “A Review of the Literature Examining the Physiological Processes Underlying the Therapeutic Benefits of Hatha Yoga.” Advances in Mind-Body Medicine, vol. 23, no. 3, 2008, pp. 10-18. https://www.ncbi.nlm.nih.gov/pubmed/20664144.

176. Groessl, E., et al. “Yoga for Military Veterans with Chronic Low Back Pain: A Randomized Clinical Trial.” American Journal of Preventive Medicine, vol. 53, no.5, 2017, pp. 599-608. https://doi.org/10.1016/j.amepre.2017.05.019.

177. Sanchis-Gomar, F., et al. “Effects of Acute Exercise and Xanthine Oxidase Inhibition on Novel Cardiovascular Biomarkers.” Translational Research, vol. 162, no. 2, 2013, pp. 102-109. https://doi.org/10.1016/j.trsl.2013.02.006.

178. Shi, Yan. “Caught Red-Handed: Uric Acid is an Agent of Inflammation.” The Journal of Clinical Investigation, vol. 120, no. 6, 2010, pp. 1809-1811. doi: 10.1172/JCI43132. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2877961/.

179. Lin, Chia-Ni, et al. “Measuring Serum Total and Free Indoxyl Sulfate and P-Cresyl Sulfate in Chronic Kidney Disease Using UPLC-MS/MS.” Journal of Food and Drug Analysis, vol. 27, no. 2, 2019, pp. 502-509. https://doi.org/10.1016/j.jfda.2018.10.008.

180. Cervenka, I., et al. “Kynurenines: Tryptophan's Metabolites in Exercise, Inflammation, and Mental Health.” Science, vol. 357, no. 6349, 2017. doi: 10.1126/science.aaf9794. https://www.ncbi.nlm.nih.gov/pubmed/28751584.

181. Kohrt, Wendy, et al. “Physical Activity and Bone Health.” Medicine & Science in Sports & Exercise, vol. 36, no. 11, 2004, pp. 1985-1996. doi: 10.1249/01.MSS.0000142662.21767.58. https://journals.lww.com/acsm-msse/Fulltext/2004/11000/Physical_Activity_and_Bone_Health.24.aspx.

182. Franke, A., et al. “Postprandial Walking but not Consumption of Alcoholic Digestifs or Espresso Accelerates Gastric Emptying in Healthy Volunteers.” Journal of Gastrointestinal and Liver Diseases, vol. 17, no. 1, 2008, pp. 27-31. https://www.ncbi.nlm.nih.gov/pubmed/18392240.

183. Hodges, Robbie. “Too Much Exercise Is Bad for Your Gut - and the Other Dangers of Over Training.” The Telegraph, 7 June 2017, https://www.telegraph.co.uk/health-fitness/body/much-exercise-bad-gut-dangers-training/. Accessed 24 February 2020.

184. Benham, G. “The Sleep Health Index: Correlations with Standardized Stress and Sleep Measures in a Predominantly Hispanic College Student Population.” Sleep Health, vol. 5, no. 6, 2019, pp. 587-591. doi: 10.1016/j.sleh.2019.07.007. https://www.ncbi.nlm.nih.gov/pubmed/31422914.

185. Sabato, T.M., et al. “The Elite Young Athlete: Strategies to Ensure Physical and Emotional Health.” Journal of Sports Medicine, vol. 7, 2016, pp. 99-113. doi: 10.2147/OAJSM.S96821. https://www.sportsmed.org/AOSSMIMIS/members/downloads/education/ConsensusStatements/PsychologicalIssues.pdf.

186. Murray, Charles D.R., et al. “Effect of Acute Physical and Psychological Stress on Gut Autonomic Innervation in Irritable Bowel Syndrome.” Gastroenterology, vol. 127, no. 6, 2004, pp. 1695-1703. https://doi.org/10.1053/j.gastro.2004.08.057.

187. Konturek, P.C., et al. “Stress and the Gut: Pathophysiology, Clinical Consequences, Diagnostic Approach and Treatment Options.” The Journal of Physiology and Pharmacology, vol. 62, no. 6, 2011, pp. 591-599. https://www.ncbi.nlm.nih.gov/pubmed/22314561/.

188. Boulange, Claire L., et al. “Impact of the Gut Microbiota on Inflammation, Obesity, and Metabolic Disease.” Genome Medicine, vol. 8, no. 42, 2016. https://doi.org/10.1186/s13073-016-0303-2.


189. Smith, Marlaine C., et al. “Benefits of Massage Therapy for Hospitalized Patients: A Descriptive and Qualitative Evaluation.” Alternative Therapies in Health and Medicine, vol. 5, no. 4, 1999, pp. 64-71. https://search.proquest.com/openview/6d6a8237b1026fc482cbb626605e453f/1?pq-origsite=gscholar&cbl=32528.

Additional Citations

190. Praschberger, Monika, et al. “The Uremic Toxin Indoxyl Sulfate Acts as a pro- or Antioxidant on LDL Oxidation.” Free Radical Biology & Medicine, U.S. National Library of Medicine, Oct. 2014, https://www.sciencedirect.com/science/article/abs/...

191. Ames, BN, et al. “Uric Acid Provides an Antioxidant Defense in Humans against Oxidant- and Radical-Caused Aging and Cancer: a Hypothesis.” Proceedings of the National Academy of Sciences of the United States of America, U.S. National Library of Medicine, Nov. 1981, https://www.pnas.org/content/78/11/6858

192. Mead, M Nathaniel. “Benefits of Sunlight: a Bright Spot for Human Health.” Environmental Health Perspectives, National Institute of Environmental Health Sciences, Apr. 2008, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2290997/

193. Lambert, GW, et al. “Effect of Sunlight and Season on Serotonin Turnover in the Brain.” The Lancet, 7 Dec. 2002, https://www.thelancet.com/action/showPdf?pii=S0140...

194. Tang, Donyang, et al. “A Review of Phytochemistry, Metabolite Changes, and Medicinal Uses of the Common Food Mung Bean and Its Sprouts ( Vigna Radiata ).” Chemistry Central Journal, BioMed Central, 17 Jan. 2014, https://bmcchem.biomedcentral.com/articles/10.1186/1752-153X-8-4.

Ixcela Power Continued

195. Makarov, M.V., et al. “The chemistry of the vitamin B3 metabolome.” Biochem Soc Trans. 2019 Feb 28;47(1):131-147. https://doi.org/10.1042/BST20180420.
Pissios, P. “Nicotinamide N-Methyltransferase: More Than a Vitamin B3 Clearance Enzyme.” Trends Endocrinol Metab. 2017 May;28(5):340-353. https://doi.org/10.1016/j.tem.2017.02.004.

196. Pissios, P. “Nicotinamide N-Methyltransferase: More Than a Vitamin B3 Clearance Enzyme.” Trends Endocrinol Metab. 2017 May;28(5):340-353. https://doi.org/10.1016/j.tem.2017.02.004.

197. Doroftei, B., et al. “Minireview Exploring the Biological Cycle of Vitamin B3 and Its Influence on Oxidative Stress: Further Molecular and Clinical Aspects.” Molecules. 2020 Jul 22;25(15):3323. https://doi.org/10.3390/molecules25153323.

198. Tardy, A.L., et al. “Vitamins and Minerals for Energy, Fatigue and Cognition: A Narrative Review of the Biochemical and Clinical Evidence.” Nutrients. 2020 Jan 16;12(1):228. https://doi.org/10.3390/nu12010228.

199. Kennedy, D.O. “B Vitamins and the Brain: Mechanisms, Dose and Efficacy—A Review.” Nutrients. 2016 Jan 27;8(2):68. https://doi.org/10.3390/nu8020068.

200. Kunugi, H. and Mohammed Ali A. “Royal Jelly and Its Components Promote Healthy Aging and Longevity: From Animal Models to Humans.” Int J Mol Sci. 2019 Sep 20;20(19):4662. https://doi.org/10.3390/ijms20194662.

201. Dietl, A.M., et al. “Riboflavin and pantothenic acid biosynthesis are crucial for iron homeostasis and virulence in the pathogenic mold Aspergillus fumigatus.” Virulence. 2018;9(1):1036-1049. https://doi.org/10.1080/21505594.2018.1482181.

202. Reininghaus, E.Z., et al. “PROVIT: Supplementary Probiotic Treatment and Vitamin B7 in Depression—A Randomized Controlled Trial.” Nutrients. 2020 Nov 8;12(11):3422. https://doi.org/10.3390/nu12113422.

203. Mock, D.M. “Biotin: From Nutrition to Therapeutics.” J Nutr. 2017 Aug;147(8):1487-1492. Epub 2017 Jul 12. https://doi.org/10.3945/jn.116.238956.

204. Lohr, K.M., et al. “Biotin rescues mitochondrial dysfunction and neurotoxicity in a tauopathy model.” Proc Natl Acad Sci U S A. 2020 Dec 29;117(52):33608-33618. Epub 2020 Dec 14. https://doi.org/10.1073/pnas.1922392117.

205. Lenti, G., et al. “Vitamin B12 among Vegetarians: Status, Assessment and Supplementation.” Nutrients. 2016 Nov 29;8(12):767. https://doi.org/10.3390/nu8120767.

206. Shipton, M.J. and Thachil, J. “Vitamin B12 deficiency - A 21st century perspective.” Clin Med (Lond). 2015 Apr;15(2):145-50. https://doi.org/10.7861/clinmedicine.15-2-145.

207. Romain, M., et al. “The role of Vitamin B12 in the critically ill—a review.” Anaesth Intensive Care. 2016 Jul;44(4):447-52. https://doi.org/10.1177/0310057X1604400410.

208. Health Quality Ontario. “Vitamin B12 and cognitive function: an evidence-based analysis.” Ont Health Technol Assess Ser. 2013 Nov 1;13(23):1-45. http://doi.org/10.1186/1471-2296-6-8

209. O'Leary, F. and Samman, S. “Vitamin B12 in health and disease.” Nutrients. 2010 Mar;2(3):299-316. Epub 2010 Mar 5. https://doi.org/10.3390/nu2030299.

210. Wiedeman, A.M., et al. “Dietary Choline Intake: Current State of Knowledge Across the Life Cycle.” Nutrients. 2018 Oct 16;10(10):1513. https://doi.org/10.3390/nu10101513.

211. Mun, J.G., et al. “Choline and DHA in Maternal and Infant Nutrition: Synergistic Implications in Brain and Eye Health.” Nutrients. 2019 May 21;11(5):1125. https://doi.org/10.3390/nu11051125.

212. Bekdash, R.A. “Neuroprotective Effects of Choline and Other Methyl Donors.” Nutrients. 2019 Dec 6;11(12):2995. https://doi.org/10.3390/nu11122995.

213. Chatree, S., et al. “Role of Inositols and Inositol Phosphates in Energy Metabolism.” Molecules. 2020 Nov 1;25(21):5079. https://doi.org/10.3390/molecules25215079.

214. Genazzani, A.D. “Inositol as putative integrative treatment for PCOS.” Reprod Biomed Online. 2016 Dec;33(6):770-780. https://doi.org/10.1016/j.rbmo.2016.08.024.

215. Lammers, Karen M., et al. “Gliadin Induces an Increase in Intestinal Permeability and Zonulin Release by Binding to the Chemokine Receptor CXCR3.” Gastroenterology, vol. 135, no. 1, July 2008, pp. 194–204. https://doi.org/10.1053/j.gastro.2008.03.023.